期刊文献+

煤矿安全网中基于已知样本的快速聚类入侵检测算法

Fast clustering algorithm based on foregone samples in intrusion detections of mine security production
下载PDF
导出
摘要 针对煤矿安全生产信息系统中出现的网络入侵问题,在网络入侵异常检测技术中提出一种基于已知样本的快速聚类入侵检测算法.该算法通过对已知样本训练来准确获得初始聚类中心,同时运用对象分离的方法计算聚类中心和非相似度,解决了由于传统聚类算法随机选取初始聚类中心和只能计算单一连续属性或离散属性带来的网络异常检测中误报率高而检测率低的问题.实例验证表明:该算法比传统聚类算法的检测率提高了30%,误报率降低了25%,并且能获得对新型攻击的检测. Aimed to network security problems was found in mine safety production information system, a fast clustering algorithm based on foregone samples for mixed data (FCABFS) in network anomaly detections technology was proposed. Original clustering center was exactly obtained by FCABFS through training foregone samples; clustering center and non-similarity was calculated by separating objects. This algorithm solved problem of the higher false positive rate and the lower detection rate caused by using traditional clustering method with random selecting original clustering center and computing single attribute (continual or discrete) only in network anomaly detection. The experimental results compared with traditional clustering algorithm show that the detection rate is promoted 30% , and the false positive rate is diminished 25%. This algorithm can also obtain detections to new type attack.
出处 《煤炭学报》 EI CAS CSCD 北大核心 2009年第12期1707-1712,共6页 Journal of China Coal Society
基金 国家高技术研究发展计划(863)资助项目(2005AA133070)
关键词 网络入侵 异常检测 聚类 K-MEANS network intrusion anomaly detection clustering k - means
  • 相关文献

参考文献7

  • 1叶芳,吴中福,刘勇国.网络入侵的聚类算法研究与实现[J].重庆大学学报(自然科学版),2004,27(3):46-48. 被引量:12
  • 2罗敏,王丽娜,张焕国.基于无监督聚类的入侵检测方法[J].电子学报,2003,31(11):1713-1716. 被引量:64
  • 3李洋.K-means聚类算法在入侵检测中的应用[J].计算机工程,2007,33(14):154-156. 被引量:23
  • 4Zong S, Khoshgoftaar T, Seliya N. Clustering-based network intrusion detection [ J ]. International Journal of Reliability, Quality and Safety Engineering, 2005, 6:12-29.
  • 5Huang Z. A fast clustering algorithm to cluster very large categorical data set in data mining [ A]. Proc. SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery, Tech. Report 97 -07 [C]. UBC, Dept. of CS, 1997.
  • 6Huang Z. Clustering large data sets with mixed numeric and categorical values [ A]. Proceedings of the First Pacific-Asia Con- ference on Knowledge Discovery and Data Mining [ C]. Singapore, 1997.
  • 7Hinneburg A, Aggarwal C, Keim D. What is the nearest neighbor in high dimensional spaces [ A ]. The 26th International Conference on Very Large Data Bases [C]. Cairo, Egypt, 2000:506 -515.

二级参考文献8

共引文献93

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部