摘要
Novel fault-tolerant architectures for bit-parallel polynomial basis multiplier over GF(2^m), which can correct the erroneous outputs using linear code, are presented. A parity prediction circuit based on the code generator polynomial that leads lower space overhead has been designed. For bit-parallel architectures, the Moreover, there is incorporation of space overhead only marginal time error-correction is about 11%. overhead due to capability that amounts to 3.5% in case of the bit-parallel multiplier. Unlike the existing concurrent error correction (CEC) multipliers or triple modular redundancy (TMR) techniques for single error correction, the proposed architectures have multiple error-correcting capabilities.
Novel fault-tolerant architectures for bit-parallel polynomial basis multiplier over GF(2^m), which can correct the erroneous outputs using linear code, are presented. A parity prediction circuit based on the code generator polynomial that leads lower space overhead has been designed. For bit-parallel architectures, the Moreover, there is incorporation of space overhead only marginal time error-correction is about 11%. overhead due to capability that amounts to 3.5% in case of the bit-parallel multiplier. Unlike the existing concurrent error correction (CEC) multipliers or triple modular redundancy (TMR) techniques for single error correction, the proposed architectures have multiple error-correcting capabilities.
基金
supported by the National Science Council of the Republic of China,Taiwan,under Grant No.NSC 98-2221-E-262-007