期刊文献+

球壳量子点中电子能态及其量子比特的性质 被引量:3

Electronic States and the Properties of Qubit in Spherical Shell Quantum Dot
下载PDF
导出
摘要 通过求解球壳量子点的能量本征方程,得到电子能态,并以两能态叠加构造一个量子比特。对InAs材料的数值计算表明:当电子受限增强时,能量本征值增大。量子比特内电子的概率密度分布与电子的空间坐标和时间有关,在球壳的中心球面上电子出现的概率最大,在球壳边界面出现的概率为零,且各个空间点的概率密度随方位角周期性变化和随时间做周期性振荡,振荡周期随着外径(或内径)的增大而增大。 The electronic states in spherical shell quantum dot are obtained by solving the Schr6dinger equation and a quantum bit is formed by overlying both the ground state ψ000 and excited state ψ020. The numerical results for InAs spherical shell quantum dot indicate that the energy of electron increases when the electron' s confinement is strengthened, the probability density distribution of electron in a qubit has something to do with the electron' s position in the spherical shell quantum dot and time, there is a maximum in centre spherical surface and zero in boundary surfaces; the probability density of electron in all position makes periodical changing with angle coordinate and periodical oscillating with time, and the oscillating period increases with the outer (or inner) radius increasing.
出处 《固体电子学研究与进展》 CAS CSCD 北大核心 2009年第4期538-541,共4页 Research & Progress of SSE
基金 国家自然科学基金(批准号10347004) 内蒙古高校科研项目(批准号NJzy08085)
关键词 球壳量子点 电子能态 量子比特 spherical shell quantum dot electronic states qubit
  • 相关文献

参考文献11

  • 1Pellizzari T, Gardiner S A, Cirac J I, et al. Decoherence, continuous observation, and quantum computing: a cavity QED[J]. Model Phys Rev Lett, 1995,75 (21) : 3788-3791.
  • 2Cirac J I, Zoller P. Quantum computations with cold trapped ions[J]. Phys Rev Lett, 1995,74(20):4091- 4094.
  • 3Gershenfeld N A, Chuang I L. Bulk spin-resonance quantum computation[J]. Science, 1997, 275(17): 350-356.
  • 4Nakamura Y, Pashkin Y A, Tsai J S. Coherent control of macroscopic quantum states in a single-cooperpair box[J]. Nature (London), 1999,398(29):786- 788.
  • 5Duan L M, Cirac J I, Zoller P. Geometric manipulation of trapped ions for quantum computation[J]. Science, 2001,292(1):1695-1697.
  • 6Cen Lixiang, Li Xinqi, Yan Yijing, et al. Evaluation of Holonomic Quantum Computation: Adiabatic Versus Nonadiabatic[J]. Phys Rev Lett, 2003, 90(14): 147902-147905.
  • 7Li Xinqi, Yan Yijing. Quantum computation with coupled quantum dots embedded in optical microcavities[J]. Phys Rev B, 2002,65(20):205301-205305.
  • 8Li Shushen, Long Guilu, Bai Fengshan, et al. Quantuna computing[J]. Proc Nat Acad Sci, 2001,98(21): 11847-11848.
  • 9王子武,刘云飞,肖景林.抛物线性限制势量子点量子比特的振荡周期[J].内蒙古民族大学学报(自然科学版),2006,21(5):496-499. 被引量:1
  • 10高宽云,赵翠兰.量子环中量子比特的性质[J].物理学报,2008,57(7):4446-4449. 被引量:16

二级参考文献24

  • 1李树深,吴晓光,郑厚植.固态量子计算的若干重要物理问题研究[J].物理,2004,33(6):404-406. 被引量:15
  • 2陈时华,肖景林.量子点中强耦合极化子的性质[J].发光学报,2005,26(1):27-31. 被引量:11
  • 3王子武,肖景林.抛物线性限制势量子点量子比特及其光学声子效应[J].物理学报,2007,56(2):678-682. 被引量:26
  • 4Shu-Sheng Li,Jian-Bai xia,Fu-Hua Yang,et al.InAs/GaAs single-elctron quantum dot qubit[J].Journal of Applied physics,2001,90(12):6151-6155.
  • 5Shu-shen Li,Gui-Lu Long,et al.Quantum computing[J].pro Natl Acad sci USA,2001,98(21):11847.
  • 6YildirimT,ErcelebiA T.The grounds-state descriotion of the optical polaronver sus the effective dimensionality in quantum-well-type system[J].J Phys con densed Matter,1991,3:1271.
  • 7Filikhin I, Deyneka E, Melikyan H, Vlahovic B 2005 Molecular Simulation 31 779
  • 8Filikhin I, Suslov V M, Vlahovic B 2006 Physica E 33 349
  • 9Li Y M 2003 Journal of Computational Electronics 2 49
  • 10Li Y M, Voskoboynikov O, Lee C P, Sze S M 2002 Journal of Computational Electronics 1 227

共引文献15

同被引文献18

  • 1Lee B C, Voskoboynikov O, Lee C O. III-V Semicon- ductor nano-rings [J]. Physica E, 2004, 24(1-2): 87- 91.
  • 2Neder I, Heiblum M, Levinson Y, et al. Unexpected behavior in a two-path electron interferometer [J]. Phys Rev Lett, 2006, 96: 016804-1-016804-4.
  • 3Mailly D, Chapelier C, Benoit A. Experimental ob- servation of persistent currents in GaAs-A1GaAs sin- gle loop [J]. Phys Rev Lett, 1993, 70 (13): 2020- 2023.
  • 4Bayer M, Korkusinski M, Hawrylak P, et al. Optical detection of the aharonov-bohm effect on a charged particle in a nanoscale quantum ring [J]. Phys Rev Lett, 2003, 90 (18) 186801-186804.
  • 5Filikhin I, Deyneka E, Vlahovic B. Energy dependent effective mass model of InAs/GaAs quantum ring[J]. Modelling Simul Mater Sci Eng, 2004, 12 (6): 1121- 1130.
  • 6Filikhin I,Suslov V M, Vlahovic B. Electron spectral properties of the InAs/GaAs quantum ring [J]. Phys- ica E, 2006, 33 (2).. 349-354.
  • 7Li Shushen, Xia Jianbai . Electronic states of InAs/ GaAs quantum ring [J]. Journal of Applied Physics, 2001, 89(6): 3434-3437.
  • 8高宽云,赵翠兰.量子环中量子比特的性质[J].物理学报,2008,57(7):4446-4449. 被引量:16
  • 9ZHANG Hai-Rui,XIAO Jing-Lin.Effective Mass of Strong-Coupling Bound Polaron in a Triangular Quantum Well Induced by Rashba Effect[J].Communications in Theoretical Physics,2008,50(10):995-998. 被引量:17
  • 10姜福仕,赵翠兰.量子环中量子比特的声子效应[J].物理学报,2009,58(10):6786-6790. 被引量:11

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部