摘要
通过对一类三次系统的双同宿轨摄动得到的大同宿轨作进一步扰动,利用多参数摄动法和定性理论的基本方法,得到所研究的系统可以有4个极限环的结论,并给出了环的分布.
In this paper,we study the further bifurcation of the large homoclinic-loop generated by the double homoclinic loops under perturbations in a cubic system.By using the method of multi-parameter perturbation theory and qualitative analysis,we draw the conclusion that the system can have 4 limit cycles with the given distributions.
出处
《数学进展》
CSCD
北大核心
2009年第6期755-760,共6页
Advances in Mathematics(China)
基金
supported by the Science Foundation of Shandong University of Technology (No.2006KJM01).
关键词
摄动
分支
三次系统
极限环
大同宿轨
perturbation
bifurcation
cubic system
limit cycle
large homoclinic loop