期刊文献+

k-best MIRA和动态k-best MIRA 被引量:1

k-best MIRA and Dynamick-best MIRA
原文传递
导出
摘要 MIRA(Margin Infused Relaxed Algorithm)是一种超保守算法,在分类、排序、回归等应用领域都取得不错成绩.文中在传统MIRA算法基础上进行改进,提出k-best MIRA(K-MIRA)与动态k-bestM IRA(DK-MIRA)算法.这两种算法能够根据学习进程自动调整优化约束条件,从而提高算法的收敛速度与性能.将K-MIRA与DK-MIRA用于定义类问题回答中的句子排序任务,取得较为满意的实验结果. Margin infused relaxed algorithm (MIRA) is an improved ultraconservative algorithm, which is successfully used in classification, ranking and regression. The k-best MIRA (K-MIRA) and dynamic k-best MIRA (DK-MIRA) are proposed. The improved MIRA reduces the optimization constraints progressively as training moves forward. The experiment is carried out on the task of sentence ranking in definitional question answering with K-MIRA and DK-MIRA. The experimental results show that the proposed algorithms greatly improve the performance.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2009年第6期821-826,共6页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金资助项目(No.60435020 60503070)
关键词 在线算法 MIRA 分类 定义类问题回答 Online Algorithm, Margin Infused Relaxed Algorithm (MIRA), Classification, Definitional Question Answering
  • 相关文献

参考文献18

  • 1Black P E. Online Algorithm// Black P E, ed. Dictionary Algorithms and Theory of Computation Handbook. Boca Raton, USA: CRC Press LLC, 1999:10-17, 19-27.
  • 2赵宇,奚宏生,王子磊,杨坚.基于在线SVM的多用户检测算法及仿真[J].系统仿真学报,2006,18(1):50-53. 被引量:9
  • 3代六玲,黄河燕,陈肇雄.一种文本分类的在线SVM学习算法[J].中文信息学报,2005,19(5):11-15. 被引量:13
  • 4古平,朱庆生.一种可并行的贝叶斯集合在线学习算法[J].计算机科学,2006,33(4):159-161. 被引量:2
  • 5Crammer K, Singer Y. Ultraconservative Online Algorithms for Multiclass Problems. Journal of Machine Learning Research, 2003, 3 (5) : 951 -991.
  • 6Crammer K, Singer Y. Online Passive-Aggressive Algorithms. Journal of Machine Learning Research, 2006, 7 (4) : 551 - 585.
  • 7Lin D. MINIPAR: A Minimalist Parser [EB/OL]. [1999-03-12]. http ://129.2.53.113. events/colloquia/archives/Spring99/lin. html.
  • 8McDonald R. Discriminative Sentence Compression with Soft Syntactic Evidence//Proc of the Workshop on Cross-Language Knowledge Induction. Trento, Italy, 2006:297 - 304.
  • 9McDonald R, Crammer K, Pereira F. Online Large-Margin Training of Dependency Parsers//Proc of the 43rd Annual Meeting on Association for Computational Linguistics. Ann Arbor, USA, 2005: 91 - 98.
  • 10Taskar B, Guestrin C, Koller D. Max-Margin Markov Networks// Proc of the 17th Annual Conference on Neural Information Processing Systems. Vancouver, Canada, 2003:25-32.

二级参考文献35

  • 1张贤达 保铮.通讯信号处理[M].北京:国防工业出版社,2000.420-482.
  • 2Vapnik V.Statistical Learning Theory [M].Wiley-Interscience Publication,1998.
  • 3Burges C J C.A Tutorial on Support Vector Machines for Patten Recognition [J].Data Mining and Knowledge Discovery,1998,2:1-47.
  • 4S Chen.A K Samingan,L Hanzo.Support Vector Machine Multiuser Receiver for DS-CDMA Signal in Multipath Channels [J].IEEE Transaction on Neural Networks,2001,12(3):604-611.
  • 5Xiaohong Gong,Kuh A.Support Vector Machine for Multiuser Detection in CDMA Communications [C]//Signals,Systems,and Computers,1999.Conference Record of the Thirty-Third Asilomar Conference on,1999,680-684.
  • 6K W Lau,Q H Wu.OnlineTraining of Support Vector Classifier [J].Patten Recognition,2003,36:1913-1920.
  • 7U Madhow,M Honing.MMSE Interference Suppression for Direct-Sequence Spread-Spectrum CDMA [J].IEEE Trans on Communications,1998,46(8):1065-1075.
  • 8Osuna E,Freund R,Girosi G.Improved Training Algorithm for Support Vector Machines [C]//Principle J,Gile L,Morgan N,Wilson E.Neural Network for Signal Processing Ⅶ.Proceedings of the 1997 IEEE Workshop.USA:IEEE,1997.276-285.
  • 9Platt J.Fast Training of Support Vector Machines Using Sequential Minimal Optimization [C]//Sch(o)lkopf B,Burges C,Smola A J.Advanced in Kernel Methods Support Vector Learning.Cambridge,MA:MIT Press,1999.185-208.
  • 10Verdu S.Multiuser Detection [M].London:Cambridge University Press,1996.

共引文献19

同被引文献24

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部