摘要
传统的Isomap算法仅侧重于当前数据的分析,不能提供由高维空间到低维空间的快速直接映射,因此无法用于特征提取和高维数据检索.针对这一问题,文中提出一种基于Isomap的快速数据检索算法.该算法能够快速得到新样本的低维嵌入坐标,并基于此坐标检索与输入样本最相似的参考样本.在典型测试集上的实验结果表明,该算法在实现新样本到低维流形快速映射的同时,能较好保留样本的近邻关系.
The traditional lsomap algorithm emphasizes analyzing the manifold structure of the existing dataset. It can not provide fast and direct mapping of a new sample from high dimensional space to low dimensional space, so the traditional Isomap algorithm can not be used for feature extraction and high-dimensional data retrieval. In this paper, a fast mapping Isomap algorithm is proposed, by which the low-dimensional coordinates of a new sample can be calculated with relatively low computational complexity, and the most similar sample of the query sample can be retrieved based on such low-dimensional coordinates. Experimental results on typical benchmark datasets demonstrate that the proposed algorithm accomplishes the task of fast mapping with well preserving of the neighborhood relationship.
出处
《模式识别与人工智能》
EI
CSCD
北大核心
2009年第6期908-912,共5页
Pattern Recognition and Artificial Intelligence
基金
国家自然科学基金广东联合基金重点资助项目(No.U0835002)
关键词
流形学习
维数约减
特征提取
快速映射
Manifold Learning, Dimensionality Reduction, Feature Extraction, Fast Mapping