期刊文献+

鼻部毛囊的生物特征识别 被引量:1

Biometric Recognition Based on Nose Pore Features
原文传递
导出
摘要 应用Hessian矩阵的(特征值,特征向量)参数组的关系提取鼻梁的中脊线,并区分出中脊线左右二边的毛囊识别区域.然后,在Hessian矩阵特征值符号的基础上,加入最大特征值对应的特征向量的方向和梯度方向的关系作为毛囊检测的条件.在103人的数据库中,得到的识别正确率为86.26%.实验结果表明,可以把鼻部毛囊的特征识别用作高效的人体身份认证技术之一. Centerline of nose is extracted by Hessian matrix parameters to segment the matched region. Direction of gradient and eigenvector corresponding to the largest eigenvalue are combined to detect nose pore. The proposed method achieves an identification correct rate of 88.07% on a database of 103 persons. The experimental results show that nose pore feature can be used as one of the most efficient biometric features in recognition.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2009年第6期919-923,共5页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金资助项目(No.50171036)
关键词 生物特征识别 鼻部毛囊识别 HESSIAN矩阵 梯度 Biometric Recognition, Nose Pore Recognition, Hessian Matrix, Gradient
  • 相关文献

参考文献15

  • 1Yan Ping, Bowyer K W. Biometric Recognition Using Three-Dimensional Ear Shape. IEEE Trans on Pattern Analysis and Machine Intelligence, 2007, 29(8): 1297- 1308.
  • 2王长宇,宋尚玲,孙丰荣,梅良模.一种新的生物特征识别模式-手指背关节皮纹识别[J].自动化学报,2006,32(3):360-367. 被引量:2
  • 3王科俊,段胜利,冯伟兴.单训练样本人脸识别技术综述[J].模式识别与人工智能,2008,21(5):635-642. 被引量:23
  • 4Jain A K, Chen Yi, Demirkus M. Pores and Ridges: High-Resolution Fingerprint Matching Using Level 3 Features. IEEE Trans on Pattern Analysis and Machine Intelligence, :2007, 29( 1 ) : 15 -27.
  • 5Jain A K, Chen Yi, Demirkus M. Pores and Ridges: Fingerprint Matching Using Level 3 Features // Proc of the 18th International Conference on Pattern Recognition. Hongkong, China, 2006, Ⅳ: 477 - 480.
  • 6West G B, Brown J H, Enquist B J. The Fourth Dimension of Life Fractal Geometry and Allometric Scaling of Organisms. Science, 1999, 284:1677-1679.
  • 7Bishop C M. Exact Calculation of the Hessian Matrix for the Multilayer Perceptron. Neural Computation, 1992, 4(4) : 494 -501.
  • 8Baert S A M, Niessen W J, Meijering E H W, et al. Medical Image Computing and Computer-Assisted Intervention // Proc of the 3rd International Conference on Medical Image Computing and Computer Assisted Intervention. Pittsburgh, USA, 2000:11-14.
  • 9Furst J D, Pizer S M. Marching Optimal-Parameter Ridges: An Algorithm to Extract Shape Loci in 3D hnages// Proc of the Conference on Medical Image Computing and Computer-Assisted Intervention. New York, USA, 1998 : 780 - 787.
  • 10王志良,金洁华,刘冀伟,牟世堂.基于CDMA和MPEG-4的移动视频监控的实现[J].计算机工程,2006,32(20):242-243. 被引量:17

二级参考文献30

共引文献67

同被引文献1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部