期刊文献+

大颗粒形状对半固着磨粒磨具“陷阱”效应影响的离散元仿真

Simulation on the indentation of large grain in semi-fixed abrasive plate using discrete element method
下载PDF
导出
摘要 本文基于离散元的方法研究了不同顶角的大颗粒对半固着磨粒磨具"陷阱效应"的影响,在研究的过程中应用了PFC2D离散元软件,分别模拟了90°、120°和150°顶角的大颗粒,采集到大颗粒压入半固着磨粒磨具时受到的法向作用力和竖直位移之间的曲线图。由于半固着磨粒磨具内部布满了空隙,使得大颗粒能比较容易的陷入磨具中,减少了大颗粒对工件表面的损伤。通过以上大颗粒离散元模拟可知,半固着磨粒磨具"陷阱"效应持续的时间和大颗粒顶角大小成反比关系,即大颗粒的顶角越小,磨具"陷阱"效应持续时间越长,所以大颗粒的顶角大小是影响半固着磨粒磨具"陷阱"效应发挥的重要因素。 This paper analyses the influence of large grain's vertex angle on the "trap" effect of the semi-fixed abrasive plate (SFAP) using discrete element method. The large grains of different (such as 90°, 120°, 150°) vertex angle are simulated using PFC2D discrete element software, finally three curves of normal force and displacement are gained. From the curves, we can see that the normal force of the large grain doesn' t increase quickly but keeps stable in the beginning, because the SFAP is full of pores, which let the large grain easily press into the SFAP. Through the above tests, it is found that the relations between the lasting time of the "trap" effect and the large grain's vertex angle are in reverse proportion, if the large grain's vertex angle is smaller, the lasting time of the "trap" effect of SFAP is longer, and the size of large grain is an influencing factor in the "trap" effect of SFAP.
出处 《金刚石与磨料磨具工程》 CAS 北大核心 2009年第6期28-32,共5页 Diamond & Abrasives Engineering
基金 国家自然科学基金资助项目(50535040)
关键词 半固着磨粒磨具 大颗粒 离散元方法 “陷阱” 效应 semi-fixed abrasive plate large grain discrete element method "trap" effect
  • 相关文献

参考文献1

二级参考文献13

  • 1Yasunaga N,Obara A, Tarumi N. Study of Mechanochemical Effect on Wear and Its Application to Surface Finishing[J]. Researches of the Electrotechnical Laboratory, 1977(776) : 50-134.
  • 2Ogita Y, Kobayashi K, Daio H. Photoconductivity Characterization of Silicon Wafer Mirror--polishing Subsurface Damage Related to Gate Oxide Integrity[J]. Journal of Crystal Growth, 2000,210 (1/3) : 36-39.
  • 3Basim G B, Adler J J, Mahajan U, et al. Effect of Particle Size of Chemical Mechanical Polishing Slurries for Enhanced Polishing with Minimal Defects [J]. Journal of The Electrochemical Society, 2000,147(9):3523-3528.
  • 4Zhong L, Yang J, Holland K, et al. A Static Model for Scratches Generated during Aluminum Chemical --mechanical Polishing Process:Orbital Technology [J]. Japanese Journal of Applied Physics, 1999,38 : 1932-1938.
  • 5Seo Y J, Kimb S Y, Choi Y O, et al. Effects of Slurry Filter Size on the Chemical Mechanical Polishing (CMP) Defect Density[J]. Materials Letters,2004, 58:2091-2095.
  • 6Basim G B, Moudgil B M. Effect of Soft Agglomerates on CMP Slurry Performance[J]. Journal of Colloid and Interface Science, 2002,256 : 137-142.
  • 7Ohmori H,Nakagawa T. Analysis of Mirror Surface Generation of Hard and Brittle Materials by ELID (Electrolytic In--Process Dressing) Grinding with Superfine Grain Metallic Bond Wheels[J]. Annals of the CIRP, 1995,44 (1) : 287-290.
  • 8Liu J H, Pei Z J, Fisher G R. Grinding Wheels for Manufacturing of Silicon Wafers:A Literature Review[J]. International Journal of Machine Tools and Manufacture, 2007,47 : 1-13.
  • 9Liu J H, Pei Z J, Fisher G R. ELID Grinding of Silicon Wafers: A Literature Review[J]. International Journal of Machine Tools and Manufacture, 2007, 47 : 529-536.
  • 10Yuan Julong, Lv Binghai, Wang Zhiwei. A Novel Semibonded Abrasive Plate for Finishing Advanced Ceramics[C]//The 6th International Conference on Manufacturing Research (ICMR08). London, 2008.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部