期刊文献+

二维属性直方图的Fisher准则图像分割及快速递推算法 被引量:2

Image Segmentation Based on Two-Dimensional Bound Histogram Fisher Criterion and Its Fast Recursive Algorithm
下载PDF
导出
摘要 利用图像中目标和背景之间类间方差和类内方差在类别分离性中的作用,提出了基于二维属性直方图的Fisher准则分割方法.首先,在考虑图像中心像素与邻域中非直接相邻像素的基础上,通过图像直方图的统计分布特性构造属性集,建立新的二维属性直方图.然后根据最大化Fisher准则,获取最优二维阈值向量.同时为降低二维阈值算法的复杂性,提出了快速递推算法.该快速递推算法中,将二维Fisher准则的计算写成递推的形式,减少了大量的重复计算.实验结果表明,所提出的方法不仅能得到理想的分割结果,而且计算量大大减少,达到了快速分割的目的. View the effect of between-class (between object and background) scatter and within-class scatter in the image simultaneously in the field of ability of classification, image thresholding segmentation method based on 2-D (dimensional) bound histogram and Fisher criterion is proposed. First, the bound set of an image and its corresponding two-dimension bound histogram is constructed considering the center pixel and its neighbor pixels. Then using the maximizing the Fisher criterion, the 2-D threshold vector is obtained, and in order to reduce the computation complexity, a fast recursive algorithm is presented. In the fast recursive algorithm, the computation of 2-D.Fisher criterion is written in recursive form, so that many repeated calculations are avoided. Experimental results show that the proposed method can not only obtain ideal segmentation results but also decrease the computation cost reasonably, and it is suitable for real time application.
出处 《信息与控制》 CSCD 北大核心 2009年第6期659-664,共6页 Information and Control
基金 燕山大学博士基金资助项目(B243)
关键词 图像分割 属性直方图 二维Fisher准则 快速递推算法 Image segmentation bound histogram 2-D Fisher criterion fast recursive algorithm
  • 相关文献

参考文献12

二级参考文献36

  • 1张利平,黄廉卿.基于局部直方图重分布的医学图像增强方法[J].光电子.激光,2004,15(7):877-880. 被引量:9
  • 2刘健庄,栗文青.灰度图象的二维Otsu自动阈值分割法[J].自动化学报,1993,19(1):101-105. 被引量:357
  • 3李立源,东南大学学报,1996年,26卷,2期,1页
  • 4Chen W T,Pattern Recognition,1994年,27卷,885页
  • 5傅京孙,机器人学
  • 6Simon SHEK Yuen Lau. Image segmentation based on the indiscemibility relation [A]. Proceedings of the International Workshop on Rough Sets and Knowledge Discovery [C]. London: Springer-Verlag, 1993. 395-402.
  • 7GUO Hai-tao.Post-processing of the image for the high resolution imaging sonar[D].Harbin:Harbin Engineering University,2002.(in Chinese)
  • 8T. Pun. A new method for grey-level picture thresholding using the entropy of the histogram[J]. Signal Processing, 1980, 2(3) :223-237
  • 9G. Johannsen, J. Bille. A threshold selection method using information measures[C]. Proceedings of the 6th International Conference on Pattern Recognition, Munich, Germany, 1982, 1 ;140-142
  • 10J. N. Kapur, P. K. Sahoo, A. K. C. Wong. A new method for gray -level picture thresholding using the entropy of the histogram[J]. Computer Vision, Graphics , and Image Processing, 1985,29(3) ; 273-285

共引文献125

同被引文献25

  • 1童莹,邱晓晖.基于Fisher准则函数的二维阈值图像分割算法[J].电力系统通信,2004,25(9):36-39. 被引量:13
  • 2郭娟,林冬,戚文芽.基于加权Fisher准则的线性鉴别分析及人脸识别[J].计算机应用,2006,26(5):1037-1039. 被引量:8
  • 3郑宇杰,杨静宇,徐勇,於东军.一种基于Fisher鉴别极小准则的特征提取方法[J].计算机研究与发展,2006,43(7):1201-1206. 被引量:14
  • 4Sa. W, et al, Feature Selection by Combining Fisher Cri- terion and Principal Feature Analysis[J]. In Proc. Inter- national Conference on Machine Learning and Cybernetics (ICMLC 2007) Hong Kong, 2007,2: 1149-1154.
  • 5Linde, A. Buzo, R. Gray. An Algorithm for Vector Quantizer Design [ J ]. IEEE Transactions on Communica- tions, vol. 28, 1980:84-94.
  • 6H. Lukashevich. Towards Quantitative Measures of Evalu- ating Song Segmentation[C]. Proc. 9th International Con- ference on Music Information Retrieval (ISMIR'08), Sep- tember, 2008:375-380.
  • 7王飒,郑链.基于Fisher准则和特征聚类的特征选择[J].计算机应用,2007,27(11):2812-2813. 被引量:21
  • 8HAN Yanfang, SHI Pengfei. An adaptive level-selecting wavelet transform for texture defect detection [J]. Image and Vision Computing, 2007, 25 (8): 1239-1248.
  • 9Kumar A. Computer-vision-based fabric defect detection: A survey [J]. IEEETrans Industrial Electronics, 2008, 55 (1): 348-363.
  • 10Krecar O, Frischer R. Non destructive defect detection by spectral density analysis [J]. Sensors, 2011, 11 (3): 2234-2346.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部