期刊文献+

基于SIFT特征的遥感影像自动配准

Automatic Registration of Remote Sensing Imagery Based on SIFT
下载PDF
导出
摘要 提出了一种基于特征点的全自动高分辨率遥感影像配准方法,该方法采用对于尺度具有鲁棒性的SIFT算法进行特征点的提取与匹配,并通过RANSAC方法和双向匹配策略提高特征点的匹配精确度。最后利用同名特征点构建影像间的转换模型,实现高精度影像纠正与配准。实验结果表明,该算法具有较强的匹配能力和鲁棒性。 An automatic and high-precision registration of remote sensing imagery based on feature points is proposed. First a scale-invariant feature extracting algorithm SIFT is used for feature extraction and matching. Then RANSAC method and bidirectional image matching algorithm are used to improve the accuracy of matehing points. Finally, the exacted matching points are used to precisely compute the transformation relations and transformation model of the two images, automatically matching the images. The experiments show that the algorithm is of strong matching ability and robustness.
作者 茹朝阳
出处 《城市勘测》 2009年第6期61-65,共5页 Urban Geotechnical Investigation & Surveying
关键词 SIFT 影像配准 RANSAC方法 双向匹配 SIFT image registration RANSAC method bidirectional image matching SIFT image registration RANSAC method bidirectional image matching
  • 相关文献

参考文献6

  • 1David Lowe. Distinctive image features from scale-invariant keypoints [ J 1. International Journal of Computer Vision, 2004,60(2) :91-110.
  • 2Lindeberg T. Scale-space theory:A basic tool for analysising structure s at different scales[ J]. Journal Applied Statistics, 1994,21 (2) :223-261.
  • 3Jeffrey S. Beis, David G. Lowe. Shape Indexing Using Approximate Nearest-Neighbour Search in High-Dimensional Spaces. Proceedings of the IEEE 1997 Computer Society Conference on Computer Vision and Pattern Recognition, 1997 : 1000-1006.
  • 4马政德,杜云飞,周海芳,刘衡竹.遥感图像配准中相似性测度的比较和分析[J].计算机工程与科学,2008,30(2):45-48. 被引量:14
  • 5刘小军,杨杰,孙坚伟,刘志.基于SIFT的图像配准方法[J].红外与激光工程,2008,37(1):156-160. 被引量:68
  • 6孙家柄.遥感原理与应用[M].武汉:武汉大学出版社,2003.220-281.

二级参考文献21

  • 1时永刚,邹谋炎.图像配准中统计型相似性测度的比较与分析[J].计算机学报,2004,27(9):1278-1283. 被引量:16
  • 2冷晓艳,薛模根,韩裕生,李从利.基于区域特征与灰度交叉相关的序列图像拼接[J].红外与激光工程,2005,34(5):602-605. 被引量:14
  • 3刘小军,杨杰,凌建国,沈红斌.一种增量符号相关的景象匹配方法[J].红外与激光工程,2006,35(6):732-737. 被引量:4
  • 4Chen H-Mei, Varshney P K, Arora M K. Performance of Mutual Information Similarity Measure for Registration of Multitemporal Remote Sensing Images[J]. IEEE Trans on Geoscience and Remote Sensing, 2003, 41 ( 11 ) : 2445-2454.
  • 5Brown L G. A Survey of Image Registration Techniques[J]. ACM Computing Surveys, 1992, 24(4) : 325-376.
  • 6Insight Segmentation and Registration Toolkit [CP/OL]. [2006-12-10]. http://www. itk. org.
  • 7Collignon A, Maes F,Vandermeulen D. Automated Multimodality Image Registration Using Information Theory[C]//Proc of the Information Processing in Medical Imaging Conf, 1995:263-274.
  • 8Viola P,Wells W. Alignment by Maximization of Mutual Information[C]//Proc of the 5th Int'l Conf on Computer Vision, 1995 : 16-23.
  • 9Pluim J P W,Maintz J B A,Viergever M A. Mutual Information Based Registration of Medical Images: A Survey[J]. IEEE Trans on Medical Imaging,2003,22(8):986-1004.
  • 10Maes F, Collignon A, Vandermeulen D, et al. Multimodality Image Registration by Maximization of Mutual Information [J]. IEEE Trans on Medical Imaging, 1997 : 16(2) : 187-198.

共引文献164

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部