期刊文献+

一种改进的信息检索排序算法 被引量:5

An Improved Algorithm for Ranking in Information Retrieval
下载PDF
导出
摘要 信息检索的核心问题就是在文档集中为用户检索出最相关的子文档集,并依靠排序算法对检索结果按照相关性进行排序,因此排序算法的优劣直接影响检索的效率.RLR算法改进了正则经验风险模型,大大减少了计算复杂度.通过设定一定范围的允许误差值,采用对称ε-insen-sitive对数亏损函数作为亏损函数,给出对称ε-insensitive对数亏损函数满足的一些特殊性质,进而改进RLR算法.实验表明新算法对文本排序是有效的. The core function of information retrieval is to find out a subset of the most relevant documents from the files, and to rank the relevance of the results according to the ranking algorithm, so the effectiveness of the ranking algorithm directly affects the efficiency of retrieval. RLR algorithm improves the regularized empirical risk model, and greatly reduces the computational complexity. This has improved the RLR algorithm by allowing certain errors and using the symmetric ε - insensitive logistic loss function, and proved some properties of the symmetric ε - insensitive logistic loss function. Experiments show that the new algorithm is effective for text ranking.
出处 《云南民族大学学报(自然科学版)》 CAS 2010年第1期52-55,共4页 Journal of Yunnan Minzu University:Natural Sciences Edition
基金 国家自然科学基金(60903131) 云南省教育厅科学研究基金(07Z40092)
关键词 信息检索 排序 边际 RLR算法 information retrieval ranking margin RLR algorithm
  • 相关文献

参考文献9

  • 1CYNTHIA R, ROBERT E, INGRID D. Boosting based on a smooth margin [ C ]// In Proceedings of the 16th Annual Conference on Computational Learning Theory. Washington DC, 2004:502- 517.
  • 2JOACHIMS T. Optimizing search engines using clickthrough data[ C ]//In Proceedings of the 8th ACM SIGKDD Intl Conference on Knowledge Discovery and Data Mining. New York, 2002:133 -142.
  • 3BURGES C. Learning to rank using gradient descent[ C]//In Proceedings of the 22nd Iintl Conference on Machine Learning. Bonn, 2005:89 - 96.
  • 4CHUA T S, NEO S Y, GOH H K, et al. Trecvid 2005 by nus pris[C]. NIST TRECVID -2005, 2005.
  • 5HASTIE T, TIBSHIRANI R, FRIEDMAN J. The elements of statistical learning[M]. Springer Verlag, Basel,2001.
  • 6YAN R, HAUPTMANN A G. Efficient margin- based rank learning algorithms for information retrieval[ C]//CIVR 2006, Berlin : Springer,2006,4071 : 113 - 122.
  • 7DEKEL O, SHALEV - SHWARTZ S, SINGER Y. Smooth ε - insensitive regression by loss symmetrization[J].Machine Learning Research. 2005 (6) :711 - 741.
  • 8YIQUN L, YUPENG F, MIN Z, SHAOPING M. Automatic search engine performance evaluation with click - through data analysis[ C]//International World Wide Web Conference Proceedings of the 16th international conference on World Wide Web. Banff, Alberta, Canada. 2007:1133-1134.
  • 9CRASWELL N, HAWKING D. Overview of the TREC 2003 web track[ C ]//Text Retrieval Conference (TREC) TREC 2003 proceedings. NIST,2003 : 1 - 15.

同被引文献29

  • 1李孝明,曹万华.文本信息检索的精确匹配模型[J].计算机科学,2004,31(9):100-102. 被引量:7
  • 2蒋作,李彤,欧阳鑫.Delphi至Kylix软件移植中知识树的构造与移植规则[J].计算机工程,2005,31(24):90-92. 被引量:1
  • 3苏晓珂,赵磊,黄青松.Deep Web中基于迭代的查询方式[J].云南民族大学学报(自然科学版),2007,16(1):66-68. 被引量:1
  • 4Cynthia R. The P-Norm Push: A simple convex ranking algorithm that concentrates at the top of the list[J]. Journal of Machine Learning Research, 2009 (10) :2233-2271.
  • 5Rong Y, Alexander, Hauptmann D. Efficient margin-based rank learning algorithms for information retrieval[J]. CIVR, 2006 (4071 ):113-122.
  • 6Bousquet O ,Elisseeff A. Stability and generalization[J]. Journal of Machine Learning Research. 2002(2) :499-526.
  • 7Kutin S,Niyogi P. Almost-everywhere algorithmic stability and generalization error[C]//In:Proceedings of the 18th Conference on Uncertainty in Artificial Intelligence. Edmonton, Alberta, Canada:Stanford University, 2002.
  • 8Kutin S ,Niyogi P. The interaction of stability and weakness in AdaBoost[R]. Chicago:University of Chicago ,2001.
  • 9Agarwal S,Niyogi P. Stability and generalization of bipartite ranking algorithms[G]//In proceedings of the 18th Annual Conference on Learning Theory. Bertinoro, Italy, Publisher: Springer, 2005 : 32-47.
  • 10Agarwal S, Niyogi P. Generalization bounds for ranking algorithms via algorithmic stability[J]. Journal of Machine Learning Research, 2009 (10): 441-474.

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部