摘要
采用预应力结构可使复合材料飞轮的应力、位移分布得到一定改善,从而提高飞轮储能密度。考虑复合材料和预应力结构的特点,建立基于各向异性对称结构理论的计算模型,得到两层预应力转子结构复合材料储能飞轮在工作转速情况下应力和位移的解析公式,对内、外两层飞轮任一点的径向、环向应力及径向位移进行较为全面的仿真分析,并利用所建立的计算模型对飞轮在某一转速时不同的位置对径向应力、环向应力和径向位移的影响进行探讨。结果表明,内层转子径向应力在外侧最大,环向应力在内侧最大;外层转子径向应力和环向应力均在内侧最大。当角速度ω从0增加到5000rad·s-1时,内、外转子的径向应力、环向应力和径向位移都随之增大。当ω=600rad·s-1,整个飞轮径向应力、环向应力和位移的最大值出现在两层转子的接触面r=0.27m处。该分析结果可为飞轮的设计制造提供重要的参考。
Through adopting the pre-stressed structure, the stress and displacement distribution of composite material flywheel can be improved to certain extent, thereby increasing the energy storage density of flywheel. Considering characteristic of composite material and pre-stress structure, a calculation model is established on the basis of anisotropy symmetric theory. The analytic formulas of stress and displacement calculation of composite material energy storage flywheel with two-layer pre-stressed rotor structure under working speed are obtained. The radial, circumferential stress and radial displacement at a random point of inner and outer layer of flywheels are analyzed completely. Moreover, with the established model, the effect of different position of flywheel on radial, circumferential stress and radial displacement under any rotational speed are investigated. The results indicate that for inner rotor, the maximal radial stress occurs at exterior margin of the flywheel, the maximal circumferential occurs at inner margin. For outer rotor, the maximal radial and circumferential all occur at inner margin. When the angular velocity ω increases from 0 to 5 000 rados 1, the radial stress, circumferential stress and radial displacement also increase. When ω=600 rad·s^-1, the maximal radial, circumferential stress and radial displacement also occur at r=0.27 m, which is between the contact surface of two-layer rotor. It provides an important reference for flywheel design.
出处
《机械工程学报》
EI
CAS
CSCD
北大核心
2009年第12期263-268,共6页
Journal of Mechanical Engineering
基金
国家自然科学基金(50175031)
河南省重点科技攻关(072102260023)资助项目
关键词
复合材料储能飞轮
预应力转子结构
仿真计算
解析法
应力及位移分布
Composite material energy storage flywheel Pre-stressed rotor structure Simulation calculation Analytic method Stress and displacement distribution