期刊文献+

一类二阶微分方程两点边值问题的正解存在性 被引量:8

The Existence of Positive Solutions for Second-Order Two-Point Boundary Value Problem
下载PDF
导出
摘要 利用Leggett-Williams不动点定理,研究一类二阶微分方程两点边值问题的正解存在性,获得此方程的边值问题存在3个正解的新结果.结果表明,其存在性的充分条件简单,且易于验证. By using Leggett-Williams fixed point theorem,the authors studied the existence of positive solutions for a kind of second-order two-point boundary value problem.A new result of three positive solutions for the boundary value problem is obtained.
出处 《华侨大学学报(自然科学版)》 CAS 北大核心 2010年第1期113-117,共5页 Journal of Huaqiao University(Natural Science)
基金 福建省自然科学基金资助项目(Z0511026)
关键词 LEGGETT-WILLIAMS不动点定理 两点边值问题 正解 存在性 Leggett-Williams fixed point theorem two-point boundary value problem positive solution existence
  • 相关文献

参考文献9

  • 1李永祥.二阶非线性常微分方程的正周期解[J].数学学报(中文版),2002,45(3):481-488. 被引量:45
  • 2姚庆六.一类二阶三点非线性边值问题的正解存在性与多解性[J].数学学报(中文版),2002,45(6):1057-1064. 被引量:52
  • 3ERBE L H, HU S,WANG H. Multiple positive solutions of some boundary value problems[J]. J Math Anal Appl, 1994,184 : 640-648.
  • 4LIU Z, LI F. Multiple positive solutions of nonlinear two-point boundary value problem[J]. J Math Anal Appl, 1996, 203 : 610-625.
  • 5LI F Y, ZHANG Y J. Multiple symmetric nonnegative solutions of second-order ordinary differential equations[J]. Appl Math Lett, 2004,17 : 261-267.
  • 6SUN J P. Three positive solutions for second-order Neumann boundary value probtems[J]. Appl Math Lett, 2004, 17 : 1079-1084.
  • 7LI F Y, LIANG Z P, ZHANG Q. Existence of solutions to a class of nonlinear second order two-point boundary value problems[J]. J Math Anal Appl, 2005,312 : 357-373.
  • 8LEGGETF W,WILLIAMS L R. Multiple positive fixed points of nonlinear operators on ordered Banach spaces[J]. Indiana Univ Math J, 1979,28: 673-688.
  • 9王全义.具状态依赖时滞的泛函微分方程周期解[J].华侨大学学报(自然科学版),2007,28(2):212-215. 被引量:2

二级参考文献24

  • 1韩飞,王全义.具状态依赖时滞微分方程的周期正解[J].华侨大学学报(自然科学版),2005,26(4):357-360. 被引量:9
  • 2Leela S., Monotone method for second order periodic boundary value problems, Nonlinear Anal., 1983, 7:349-355.
  • 3Nieto J. J., Nonlinear second-order peroidic boundary value problems, J. Math, Anal. Appl., 1988, 130:22-29.
  • 4Cabada A., Nieto J. J., A generation of the monotone iterative technique for nonlinear second-order periodicboundary value problems, J. Math. Anal. Appl., 1990, 151: 181-189.
  • 5Cabada A., The method of lower and upper solutions for second, third, forth, and higher order boundaryvalue problens, J. Math. Anal. Appl., 1994, 185: 302-320.
  • 6Gossez J. P., Pmari P., Periodic solutions of a second order ordinary differential equation: anecesary andsufficient condition for nonresonance, J. Diff. Equs., 1991, 94: 67-82.
  • 7Omari P., Villari G., Zandin F., Periodic solutions of lienard equation with one-sided growth restrictions, J.Diff. Equs., 1987, 67: 278-293.
  • 8Ge Weigao, On the existence of harmonic solutions of lienard system, Nonlinear Anal., 1991, 16(2): 183-190.
  • 9Mawhin J., Willem M., Multiple solutions of the periodic boundary value problem for some forced pendulumtype equations, J. Diff. Equs., 1984, 52: 264-287.
  • 10Zelati V. C., Periodic solutions of dynamical systems with bounded potential, J. Diff. Equs., 1987, 67:400-413.

共引文献96

同被引文献66

引证文献8

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部