摘要
给出多项式的若干引理,并对引理进行证明。在此基础上,给出GF(2)上周期序列线性复杂度的表达形式,应用该表达式得出周期N=2pn的二元序列线性复杂度和m(s)之间的关系,其中p是个奇素数,并且2是一个模p2的本源根。结合魏算法,给出2个实例进行证明,结果表明该结果的正确性。
This paper gives some polynomial lemmas and proof of lemma. On basis of these lemmas, the expression of Linear Complexity(LC) of periodic sequences is gave. Application of the expression show the most important result of this article, a relationship between re(s) and the LC of a given sequence s with period N=2pn over GF(2). Where p is an odd prime, 2 is a primitive root module p. Combined with Wei algorithm, it gives two examples to prove the results. Result shows that the relationship is correct.
出处
《计算机工程》
CAS
CSCD
北大核心
2010年第1期164-165,169,共3页
Computer Engineering
基金
安徽省教育厅基金资助重大项目"Web主动服务关键技术研究与应用"(ZD200904)
关键词
密码
流密码
线性复杂度
最小多项式
cipher
stream cipher
Linear Complexity(LC)
minimum polynomial