期刊文献+

自适应边缘保护的SAR图像降斑算法 被引量:4

Adaptive Edge-preserving Algorithm for SAR Image Despeckling
下载PDF
导出
摘要 针对以往SAR图像相干斑抑制算法中存在的难以兼顾均匀区域平滑和边缘细节保护的不足,提出一种自适应边缘保护的SAR图像降斑算法。采用方差系数、均值比值和空间相关性等信息作为滤波器权重分配因子。实验结果表明,综合运用以上3种图像的局部邻域信息,该算法在均匀区域平滑和边缘保护两方面都有较好的效果。 To solve the shortage of the existing despeckling algorithms which can not suppress the noise and preserve the edge at the same time, an adaptive edge-preserving algorithm for Synthetic Aperture Radar(SAR) image despeckling is proposed. Relative deviation, ratio of averges and spatial correlation of pixels are applied to distribute the weight for the filter. Due to the use of the.three kinds of local information synthetically, experimental results show that better performances are achieved both in area smoothing and edge preserving.
出处 《计算机工程》 CAS CSCD 北大核心 2010年第1期229-230,250,共3页 Computer Engineering
基金 河南省基础与前沿技术研究计划基金资助项目(072300450240)
关键词 SAR图像 相干斑抑制 边缘保护 Synthetic Aperture Radar(SAR) image speckle reduction edge preserving
  • 相关文献

参考文献6

  • 1焦李成,王爽,侯彪.SAR图像理解与解译研究进展[J].电子学报,2005,33(B12):2423-2434. 被引量:6
  • 2Lee J S. Speckle Filtering of Synthetic Aperture Radar Images: A Review[J]. Remote Sensing Review, 1994, 8: 313-340.
  • 3Alexander K D T, Sawchuk A A. Adaptive Noise Smoothing Filter for Signal-dependent Noise[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1985, 7(2): 165-177.
  • 4Kuan D T, Sawchuk A A. Adaptive Restoration of Images with Speckle[J]. IEEE Transactions on Acoustics Speech and Signal Processing, 1987, 35(3): 373-383.
  • 5Frost V S, Stiles J A, Shanmugan K S, et al. A Model for Radar Images and Its Application to Adaptive Digital Filtering of Multiplicative Noise[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1982, 4(2): 157-166.
  • 6王晓军,孙洪,管鲍.SAR图像相干斑抑制滤波性能评价[J].系统工程与电子技术,2004,26(9):1165-1171. 被引量:20

二级参考文献100

共引文献24

同被引文献20

  • 1易翔,王蔚然.一种概率自适应图像去噪模型[J].电子学报,2005,33(1):63-66. 被引量:10
  • 2Lee J S.Speckle Suppression and Analysis for Synthetic Aperture Radar Image[J].Opt.Eng.,1986,25(5):636-643.
  • 3Do M N,Vetterli M.Contourlets:A Directional Multiresolution Image Representation[C] //Proc.of IEEE International Conference on Image Processing.[S.l.] :Academic Press,2002.
  • 4David L.De-noising by Soft-thresholding[J].IEEE Trans.on Information Theory,1995,41(3): 617-627.
  • 5Levent S E,Ivan W S.Bivariate Shrinkage Functions for Wavelet-based De-noising Exploiting Interscale Dependency[J].IEEE Transactions on Signal Processing.2002,50(11):2744-2756.
  • 6Levent S E,Ivan W S.A Bivariate Shrinkage Functions for Wavelet-based De-noising[C]//Proc.of ICASSP’02.[S.l.]: IEEE Press,2002.
  • 7Levent S E,Ivan W S.Bivariate Shrinkage with Local Variance Estimation[J].IEEE Signal Processing Letters.2002,9(12):438-441.
  • 8Duncan D Y.Directional Multiscale Modeling of Images Using the Contourlet Transform[J].IEEE Transactions on Image Processing.2006,15(6):1610-1620.
  • 9Lee J S, Jurkevich I, Dewaele P, et al. Speckle Filtering of Synthetic Aperture Radar Images: A Review[J]. Remote Sensing Review, 1994, 8(4): 313-340.
  • 10Romero R, Marcos J S, Carrasco D, et al. Usage of Multi-temporal Filtering of SAR Images for Change Detection[C]//Proc. of IEEE Int'l Conf. on Geoscience and Remote Sensing. IS. 1.]: IEEE Press, 2007.

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部