期刊文献+

重力扰动对惯性导航系统的位置误差影响分析 被引量:8

Analysis of Inertial Navigation System Positioning Error Caused by Gravity Disturbance
原文传递
导出
摘要 从重力学和牛顿力学的基本概念出发,给出了包含重力扰动影响的惯导误差力学编排方程,以单通道惯导系统为例,讨论了三种变化情况下,由垂线偏差引起的惯导位置误差及其误差传播特性,并以分辨率为1′×1′的某区域垂线偏差数据为背景场进行仿真。由仿真结果可以看出,在设定航线上,垂线偏差引起的惯导系统水平误差最大可达3 km。 The error of high-accuracy inertial navigation system(INS) caused by the gravity disturbance can't be neglected. Starting from the physical geodesy and Newton's second law, an error dynamics equation of INS, including the influence of gavity disturbance, is firstly presented in this paper. Then, taking single-axis INS as an example, the position error caused by the deflection of vertical and corresponding characteristics of error propagation in three situation were analyzed. Finally, simulation was done on 1' × 1' deflection of vertical database, and from the simulation result we can see that the horizontal error of INS caused by deflections of the vertical on the sailing course can reach as large as 3 km.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2010年第1期30-32,41,共4页 Geomatics and Information Science of Wuhan University
基金 国家杰出青年科学基金资助项目(40125013) 国家自然科学基金资助项目(40774002)
关键词 垂线偏差 拉普拉斯变换 惯性导航系统 deflections of the vertical Laplace inertial navigation system
  • 相关文献

参考文献8

  • 1Jekeli C. Inertial Navigation Systems with Geodetic Applications[M]. Berlin:deGruyter, 2001.
  • 2Vandcrwcrf K. Schuler Pumping of Inertial Velocity Errors Due to Gravity Anomalies Along a Popular North Pacific Airway[J]. IEEE, 1996:642-648.
  • 3Hsu D Y. An Accurate and Efficient Approximation to the Normal Gravity[J]. IEEE, 1998:38-44.
  • 4李斐,束蝉方,陈武.高精度惯性导航系统对重力场模型的要求[J].武汉大学学报(信息科学版),2006,31(6):508-511. 被引量:10
  • 5Moryl J, Rice H, Shinners S. The Universal Gravity Module for Enhanced Submarine Navigation[J]. IEEE, 1998:324-331.
  • 6宁津生,郭春喜,王斌,王惠民.我国陆地垂线偏差精化计算[J].武汉大学学报(信息科学版),2006,31(12):1035-1038. 被引量:20
  • 7Eissfeller B, Spietz P. Shaping Filter Design for the Anomalous Gravity Field by Means of Spectral Faetorization[R]. Publications 1988 of IAPG Univ FAF, Munich, 1988.
  • 8Mandour I M, Eldakiky M M. Inertial Navigation System Synthesis Approach and Gravity" Induced Error Sensitivity [J]. Transactions on Aerospace and Electronic Systems, 1988, 24(1) :40-50.

二级参考文献13

  • 1Britting K R.Inertial Navigation Systems Analysis[M].New York:Wiley & Sons,1971
  • 2Jeleli C.Gravity on Precise Short-Term,3-D Free-Inertial Navigation[J].Navigation,1997,44(3):347-357
  • 3Gleason D.Critical Role of Gravity Compensation in a Stand-Alone Precision INS[C].DARPA PINS Meeting,Arligton,Virginia,2003
  • 4Ditmar P,Kusche J,Klees R.Computation of Spherical Harmonic Coefficients from Satellite Gravity Gradiometry Data:Regularization Issues[J].Journal of Geodesy,2003,77(7/8):465-477
  • 5Moritz H.Covariance Functions in Least-Squares Collocation[R].Report No.240,Ohio State University,1976
  • 6Maj J R,Lowell A.Vision for Precision Inertial Navigation Systems,DARPA PINS Meeting,Arlington,Virgina,2003
  • 7Jordan S K,Center J L.Establishing Requirements for Gravity Surveys for Very Accurate Inertial Navigation[J].Navigation,1986,33(2):90-108
  • 8Kwon J.Gravity Compensation Methods for Precision INS[C].ION 60th Annual Meeting,Dayton Ohio,2004
  • 9Schwarz K P,Gravity Induced Position Errors in Airborne Inertial Navigation[R].Report No.326,Department of Geodetic Science and Surveying,Ohio State University,1981
  • 10Grejner-Brzezinska D A,Wang Jin.Gravity Modeling for High-Accuracy GPS/INS Integration[J].Navigation,1998,45 (3):209-220

共引文献28

同被引文献43

引证文献8

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部