期刊文献+

拟凸可行问题的投影算法

Projection algorithm for the quasiconvex feasibility problem
下载PDF
导出
摘要 利用Plastria提出的拟凸函数lower次微分,借鉴凸可行问题的投影算法,给出了一个拟凸可行问题的投影算法.并证明了该算法的收敛性. In the light of projection algorithms for the convex feasibility problem, a projection algorithm was proposed for quasiconvex feasibility problem based on Plastria' s lower subdifferential.The convergence of the algorithm was proved.
作者 李莉 高岩
出处 《上海理工大学学报》 CAS 北大核心 2009年第6期562-564,共3页 Journal of University of Shanghai For Science and Technology
基金 国家自然科学基金资助项目(10671126) 上海市重点学科建设资助项目(T0502)
关键词 可行问题 投影算法 拟凸函数 次微分 feasibility problem projection algorithm quasiconvex functions subdifferential
  • 相关文献

参考文献13

  • 1CHINNECK J W. The constraint consensus method for finding approximately feasible points in nonlinear programs [J].Informs J Comput, 2004,16:255 - 265.
  • 2DEUTSCH F. The method of alternating orthogonal projections [C]//Approximation Theory, Spline Functions and Applications. Dordrecht.. Kluwer Academic Publishers, 1992: 105 - 121.
  • 3HERMAN G T. Image Reconstruction from projections [M]. New York.. Academic Press, 1980.
  • 4GREENBERG H J, PIERSKALLA W P. A reviews of quasiconvex functions[J]. Operation Research, 1971, 19:1 553 - 1 570.
  • 5AHARONI R, BERMAN A, CENSOR Y. An interior points algorithm for the convex feasibility problem [J].Adv in Appl Math, 1983,4: 479 - 489.
  • 6BAUSCHKE H H, BORWEIN J M. On projection algorithms for solving convex feasibility problems [J].SIAM Rev, 1996,38(3) :367 - 426.
  • 7CENSOR Y. Iterative methods for the convex feasibility problem [J]. Discrete Math, 1984,20: 83 - 91.
  • 8CROMBEZ G. Non-monotoneous parallel iteration for solving convex feasibility problems [J]. Kybernetika, 2003,39: 547 - 560.
  • 9GARCIA-PALOMARES U M, GONZALEZ-CASTANO F J. Incomplete projection algorithms for solving the convex feasibility problem [J]. Numerical Algorithms, 1998,18: 177 - 193.
  • 10CENSOR Y, SEGAL A. Algorithms for the quasiconvex feasibility problem[J].Journal of Computational and Applied Mathematics, 2006,185 : 34 - 50.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部