期刊文献+

S集的不可测性

Immeasurability of the Set S
下载PDF
导出
摘要 指出了对于Rn中一些集合的Minkowski维数,已经得到了一些令人满意的结果,但是对于与此密切相关的Minkowski容度,所得到的结果还相当的不完善.通过自相似集合的分形性质准确地计算出了二维空间上S集的上Minkowski容度和下Minkowski容度,得到了它是Minkowski不可测的结果. Some good results were already obtained for the Minkowski dimension of some sets in Rn.But some results of the Minkowski contents of the sets are not very perfect.This paper starts from the geometric properties of self-similar sets,obtains that the fractal set S is not Minkowski measurable by elementary methods.This method is accepted easily.
作者 杨华 蒋永红
出处 《中南民族大学学报(自然科学版)》 CAS 2009年第4期115-117,共3页 Journal of South-Central University for Nationalities:Natural Science Edition
基金 武汉工业学院校基金资助项目(08Q33 06D19) 中南民族大学科研基金资助项目(YSQ06007)
关键词 容度 维数 不可测 content dimension immeasurable
  • 相关文献

参考文献6

  • 1Berry M V. Some geometric aspects of wave motion, wavefront dislocations, diffraction catastrophes, diffractals, in Geometry of the Laplace Operator[J]. Proc Pure Math, 1980, 36: 13-38.
  • 2Lapidus M L, Pomerance C. The Riemann zetafunction and the one-dimensional Weyl-Berry conjecture for fraetal drums[J]. Proc London Math Soc, 1993, 66: 41-69.
  • 3Neuberger J M. Computing eigenfunctions on the Koch Snowflake: a new grid and symmetry[J]. Journal of Computational and Applied Mathematics, 2006, 191: 126-142.
  • 4Steven H. Generalisation of the modified Weyl-Berry conjecture for drums with jagged boundaries [J]. Physics Letters A, 2003, 318: 380-387.
  • 5蒋锋,陈世荣.一致Cantor集的Minkowski容度[J].数学物理学报(A辑),2007,27(4):641-647. 被引量:5
  • 6陈世荣.一类集合的 MINKOWSKI 容度[J].数学杂志,1993,13(1):1-14. 被引量:10

二级参考文献9

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部