期刊文献+

多性能指标系统控制器自设计方法及其应用研究

Study of controller self-design method about multi-performance-index system
下载PDF
导出
摘要 针对具有多指标的被控对象,提出一种基于神经网络的控制器自设计方法。算法利用并行遗传算法按照被控对象各项性能指标进化神经网络控制器,在遗传算法每代结束时利用适应性权重法根据各项指标数据计算综合适应度值,选择综合适应度最佳个体进行遗传操作,从而获得综合性能指标最佳的控制器。将算法应用于异步电机矢量控制系统的速度控制器自设计中,仿真实验验证了本方法的有效性。 This paper proposes a method of designing controller for multi-performance-index system based on neural networks reinforcement learning. It uses parallel genetic algorithm to evolve the neurocontroller according to the different performance index. At the end of each generation during the evolution, it uses adaptive weight approach to calculate the synthetical fitness of the system and selects elitists to execute evolutionary operation. With the synthetical fitness function, it will design the optimal neurocontroller. Through applying the method to design a speed controller for an asynchronous drive system, the simulation results validate the feasibility of the proposed method.
出处 《舰船科学技术》 2009年第12期118-121,126,共5页 Ship Science and Technology
关键词 遗传算法 神经网络 矢量控制 控制器自设计 evolutionary algorithms neural networks vector control controller self-design
  • 相关文献

参考文献11

  • 1Hoskins J C, et al. Process control via ANN and RL [ J]. Computers & Chemical Engineering, 1992,16:241 - 251.
  • 2Asada M. Purposive behavior acquisition for a real robot by vision-based RL[ J ]. Machine Learning, 1996,22:163 - 187.
  • 3Lin C J, et al. Reinforcement learning for an ART-based fuzzy adaptive Learning control network [ J]. IEEE Trans NN,1996, (7) :709 -730.
  • 4Lin C J, et al. An ART-based fuzzy adaptive learning control network [ R ]. Proc IEEE Int conf on fuzzy systems, 1994,1 - 6.
  • 5Lin C J, et al. Reinforcement structure/parameter learning for NN-based fuzzy logic lontrol systems [ J]. IEEE Trans Fuzzy systems, 1994, ( 2 ) : 16 - 63.
  • 6Carpenter G A, et al. Fuzzy ART: Fast stable learning and categorization of analog patterns [ J]. Neural network, 1991(2) :759 -771.
  • 7Carpenter G A, et al. Fuzzy ARTMAP [J]. IEEE Trans NN. 1992,(3) :698 -712.
  • 8QIN Yong-fa, ZHAO Ming-yang,QIN Yong-fa. Research on A new multiobjective combinatorial optimization algorithm [ A ].proceedings of the 2004 IEEE International Conference on Robotics and Biomimeties,2004 : 187 - 191.
  • 9祁荣宾,钱锋,杜文莉,颜学峰.基于精英选择和个体迁移的多目标遗传算法[J].控制与决策,2007,22(2):164-168. 被引量:28
  • 10Gen M, CHEN Run-wei. Genetic algorithms and engineering optimization [ M 1. Beijing: Tsinghua University Press ,2003.

二级参考文献10

  • 1Schaffer J D.Multiple objective optimization with vector evaluated genetic algorithms[C].Proc of the 1st Int Conf on Genetic Algorithms.Hillsdale:Lawrence Erlbaum Associates,1985:93-100.
  • 2Fonseca C M,Fleming P J.Genetic algorithms for multiobjective optimization:Formulation,discussion and generation[C].Proc of the 5th Int Conf on Genetic Algorithms.San Mateo,1993:416-423.
  • 3Srinivas N,Deb K.Multiobjective function optimization using nondominated sorting genetic algorithms[J].Evolutionary Computation,1995,2(2):221-248.
  • 4Leung Y W,Wang Y P.Multiobjective programming using uniform design and genetic algorithm[J].IEEE Trans on System Man,Cybernetics-Part C:Application and Reviews,2000,30(3):293-304.
  • 5Zitzler E,Thiele L.Multiobjective evolutionary algorithms:A comparative case study and the strength Pareto approach[J].IEEE Trans on Evolutionary Computation,1999,3(4):257-271.
  • 6Knowles J,Corne D.The Pareto archived evolution strategy:A new baseline algorithm for multiobjective optimization[C].Proc of the 1999 Congress on Evolutionary Computation.Piscataway:IEEE Press,1999:98-105.
  • 7Fonseca C M,Fleming P J.Multiobjective optimization and multiple constraint handling with evolutionary algorithms-Part I:A unified formulation[J].IEEE Trans on System,Man,Cybernetics-Part A:Systems and Humans,1998,28(1):26-37.
  • 8Dedieu S,Pibouleau L,Azzaropantel C,et al.Design and retrofit of multiobjective batch plants via a multicriteria genetic algorithm[J].Computers and Chemical Engineering,2003,27(12):1723-1740.
  • 9Zitzler E,Thiele L.Multiobjective evolutionary algorithms:A comparative case study and the strength Pareto approach[J]. IEEE Trans on Evolutionary Computation,1999,3(4):257-271.
  • 10Deb K,Pratap A,Agarwal S,et al.A fast and elitist multiobjective genetic algorithm:NSGA-Ⅱ[J].IEEE Trans on Evolutionary Computation,2002,6(2):182-197.

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部