期刊文献+

一类非线性中立型系统的渐近稳定性(英文) 被引量:1

Asymptotic Stability on a Class of Nonlinear Neutral Systems
下载PDF
导出
摘要 讨论了一类非线性中立型系统的渐近稳定性问题.引入了适当的向量Lyapunov-Krasovskii泛函,给出了不仅依赖于滞后项时滞,而且还依赖于中立项时滞的稳定性判据.改进了先前用于算子D中所施加的限制0<|α|<1.判定条件由LMIs给出,可以通过Matlab中的工具箱比较容易地进行求解.最后给出了数值仿真,以说明判据的可行性. This work gives a criterion for asymptotic stability of a class of nonlinear neutral differential systems. By introducing suitable vector Lyapunov-Krasovskii functional, a delay dependent criterion which not only depends on the discrete delay but also on the neutral delay is presented. This paper has also broken away from the assumption of 0〈|α|〈l,which is used in the operator D in earlier report. The sufficient condition is expressed in terms of linear matrix inequality. In the end of the work, utilizing Matlab toolbox, the numerical simulation examples are presented to illustrate feasibility of the criterion.
作者 包俊东
出处 《吉首大学学报(自然科学版)》 CAS 2009年第6期11-17,共7页 Journal of Jishou University(Natural Sciences Edition)
基金 Natural Science Foundation of Inner Mongolia Autonomous Region(200711020104)
关键词 渐近稳定性 中立型系统 时滞相关 线性矩阵不等式 asymptotic stability neutral systems delay dependent criteria LMI approach
  • 相关文献

参考文献17

  • 1LU W S,LEE E B,ZAK S H. On the Stabilization of Linear Neutral Delay-Differential Systems [J]. IEEE Transaction on Automatic Control, 1986, AC-31 ( 1 ) : 65 - 67.
  • 2张友,翟丁,刘满,张嗣瀛.时滞依赖型中立系统的观测器设计与镇定[J].控制理论与应用,2005,22(5):783-789. 被引量:5
  • 3BAO J D. On State Feedback Regulator for Linear Neutral Systems[J]. Chinese J. of Science Instrument,2008,29(8) : 304-308.
  • 4CHEN J D,LIEN C H,FAN K K, et al. Criteria for Asymptotic Stability of a Class of Neutral Systems via a LMI Approch [J]. IEE Proc-Control Theory Appl. , 2001,148 (6) : 442-447.
  • 5PARK J-H,WON S. A Note on Stability of Neutral Delay-Differential Systems [J]. Journal of the Franklin Institute, 1999,336:543-548.
  • 6KUANG Y. Delay Differential Equations with Applications in Population Dynamics [M]//Math. in Sci. Eng.. San Diego : Academic Press, 1993.
  • 7BRARTON R K. Bifurcation of Periodic Solutions in a Nonlinear Difference-Differential Equation of Neutral Type [J]. Quart. Appl. Math. ,1966,24:215-224.
  • 8KOLMANOVSKII V B, MYSHKIS A. Applied Theory of Functional Differential Equations [M]. Boston:Kluwer Academic Publishers, 1992.
  • 9KOLMANOVSKII V B, MYSHKIS A. Introduction to the Theory and Applications of Functional Differential Equations [J]. Kluwer Academic Dodrecht, 1999.
  • 10COPALSAMY K,LEUNG I,LIU P. Global Hopf-Bifurcation in a Neural Netlet [J]. Applied Mathematics and Computation, 198,94 : 171-192.

二级参考文献1

共引文献4

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部