期刊文献+

基于KPCA的结构振动信号特征提取研究 被引量:3

Feature Extraction of Structural Vibration Signal Using KPCA
下载PDF
导出
摘要 本文提出基于核主元分析(Kernel Principal Component Analysis,KPCA)的结构振动信号特征提取方法。通过对原始信号进行KPCA分析得到非线性主元,根据非线性主元的累计贡献率确定非线性主元个数,然后根据结构信号在不同损伤状态下的KPCA特征构造结构特征指标,由此判断结构相对于基准状态是否发生了损伤。试验结果表明,该方法在基准状态为无损状态和小损伤状态下都能很好的判断结构是否发生损伤,用于结构损伤识别特征提取是有效的。 A feature extraction method of structural vibration signals based on the Kernel Principal Component Analysis (KPCA) is proposed in this paper. The number of nonlinear principal components is confirmed according to the cumulative contribution rate of the nonlinear principal components which were obtained by using of KPCA on original data, and then the structural characteristic indicators are constructed by KPCA character- istics of the signals which are collected at different structure damage status. Finally, according to the structural characteristic indicators, it is judged whether there has been a serious structural damage compared with the reference state. The experimental results show that structure damage happened can be judged by the proposed method, regardless of the reference state which is non-destructive or smaller injury. And the method is effective on extract the feature of structural damage identification.
出处 《华中科技大学学报(城市科学版)》 CAS 2009年第4期67-70,75,共5页 Journal of Huazhong University of Science and Technology
关键词 特征提取 核主元分析 核函数 基准状态 feature extraction kernel principle component analysis (KPCA) kernel function reference state
  • 相关文献

参考文献5

二级参考文献13

  • 1范玉刚,李平,宋执环.基于特征样本的KPCA在故障诊断中的应用[J].控制与决策,2005,20(12):1415-1418. 被引量:20
  • 2李巍华,史铁林,杨叔子.基于核函数估计的转子故障诊断方法[J].机械工程学报,2006,42(9):76-82. 被引量:14
  • 3李军伟,韩捷,李志农,郝伟.小波变换域双谱分析及其在滚动轴承故障诊断中的应用[J].振动与冲击,2006,25(5):92-95. 被引量:37
  • 4边肇祺 张学工.模式识别(第二版)[M].北京:清华大学出版社,1999.12.
  • 5屈粱生 何正嘉.机械故障诊断学[M].上海:上海科学技术出版社,1986..
  • 6Goodman S,Hunter A.Feature extraction algorithms for pattern classification [A].IEEE Conference Publication on Artificial Neural Network [C],1999:738~742
  • 7Vapnik V N.The Nature of Statistical Learning Theory[M].Springer,1995
  • 8Scholkopf B,et al.Nonlinear component analysis as a kemel eigenvalue problem [J].Neural Computation,1998,(10):1299~1319
  • 9Scholkopf B,et al.Kernel principal component analysis [A].In:Advances in Kernel Methods-Support Vector Learning[C],Cambridge MA:MIT Press,1999:327~352
  • 10Scholkopf B, Smola A, Muller K R. Nolinear Component Analysis as a Kernel Eigenvalue Problem [ J ]. Neural Computation, 1998,10 (5) : 1299 - 1319.

共引文献52

同被引文献20

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部