期刊文献+

基于差分进化算法实现非高斯噪声下盲信号分离

Blind Signals Separation of α Stable Distribution Based on Differential Evolution
下载PDF
导出
摘要 简要介绍了稳定分布统计特性,推导了一种适用于α稳定分布噪声下盲信号分离的算法。该算法采用差分进化算法对目标函数自动寻优,求得分离矩阵,从而分离出信号。仿真结果表明:该算法分数低阶α稳定分布背景噪声条件下具有良好的分离效果。 In this paper,the statistic characteristic of stable distribution is investigated and a new algorithm is proposed for blind signals separation(BSS) of signals or noise with α stable distribution.By using differential evolution,the proposed algorithm finds the global optimal solution of objective function and obtains the separating matrix so that the signals are separated successfully.Simulation results indicate that the proposed method has better performance for the separate of signals or noise with α stable distribution.
作者 王璐 沈希忠
出处 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第6期918-921,共4页 Journal of East China University of Science and Technology
关键词 Α稳定分布 二阶统计量 差分进化算法 分数低阶统计量 α stable distribution second order statistics differential evolution fractional lower order statistics
  • 相关文献

参考文献8

  • 1Tewon L, Mark G, Terrenc E, et al. Independent component analysis using all extended infomax algorithm for mixed subgaussian and supergausslan source [J]. Neural Computation, 1999,11(1):417-441.
  • 2Cichockia D A. Robust techniques for independent component analysis(ICA) with noisy data [J]. Neurocomputing, 1998,22 : 113 -129.
  • 3Hyvarinen A. Blind source separation by nonstationarity of varialice: A cumulant-base approach [J].IEEE Transactions on Neural Networks, 2001,12(6) : 1471-1474.
  • 4Nikias C L. Signal Processing with Alpha-Stable Distributions and Applications [M]. New York:John Wiley and Sons, 1995.
  • 5Mutihac R, Hulle V. PCA and ICA neural implementations for source separatioma comparative study [C]//Proceedings of the International Joint Con[erence on Neural Networks. Nagoya: IEEE, 2003: 20-24.
  • 6Karhumen J. A class of neural net works for independent component analysis [J]. IEEE Trans on Neural Net Work, 1997, 8(3):101-121.
  • 7查代奉,邱天爽.基于分数低阶矩的非高斯噪声中诱发电位提取新方法[J].中国生物医学工程学报,2006,25(1):41-45. 被引量:3
  • 8Storn R, Price K. Differential evolution:A simple and efficient heuristic for global optimization over continuous spaces [J].Journal of Global Optimization, 1997,11: 341-359.

二级参考文献14

  • 1Karhunen J, Joutsensalo J. Nonlinear Generalizations Of Principal Component Learning Algorithms[C]. Proceedings of 1993 International Joint Conference on Neural Networks, 1993, 3: 46- 54.
  • 2Diamantaras KI. Asymmetric PCA neural networks for adaptive blind source separation[C]. Proceedings of the 1998 IEEE Signal Processing Society Workshop, 1998, 3(3) :103 - 112.
  • 3Gharieb RR, Cichacki A. Noise reduction in brain evoked potentials based on third-order correlations[J]. IEEE Transactions on Biomedical Engineering. 2001, 48(5) : 501 - 512.
  • 4Davila CE, Srebro R, Ghaleb IA. Optimal detection of visual evoked potential[J]. IEEE Trans on Biomedical Engineering,1998, 45(6) : 800 - 803.
  • 5Nikias CL, Shao M. Signal Processing with Alpha-Stable Distributions and Applications[J]. New York: John Wiley & Sons Inc, 1995.
  • 6Shao M, Nikias CL. Signal Processing with fractional lower order moments: stable processes and their applications[C]. Proceedings of IEEE, 1993, 81(7) :986 - 1010.
  • 7Hazarika N, Tsoi AC, Sergejew AA. Nonlinear considerations in EEG signal classification[J]. IEEE Trans. on Signal Processing,1997, 45 : 829 - 936.
  • 8Ma X, Nikias CL. Joint estimation of time delay and frequency delay in impulsive noise using fractional lower order statistics[J].IEEE Trans. on Signal Processing, 1996, 44: 2669- 2687.
  • 9Kong X, Qiu T. Adaptive estimation of latency change in evoked potentials by direct least mean p-norm time-delay estimation[J].IEEE Transactions. on Biomedical Engineering, 1999, 46(8) : 994- 1003.
  • 10Mutihac R, Hulle V, PCA and ICA neural implementations for source separation-a comparative study[C]. Proceedings of the International Joint Conference on Neural Networks, 2003, 1: 20-24.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部