期刊文献+

Molecular Basis and Regulation of Ammonium Transporter in Rice 被引量:17

Molecular Basis and Regulation of Ammonium Transporter in Rice
下载PDF
导出
摘要 Rice grows in flooded paddy fields and takes up ammonium as the preferred nitrogen (N) source. Ammonium uptake is facilitated by a family of integral membrane proteins known as ammonium transporters found in all domains of life. However, the molecular mechanism and functional characteristics of the ammonium transporters (AMT) in rice have not been determined in detail yet. In this review, we report a genome-wide search for AMT genes in rice, resulting in the increase of the number of potential AMT proteins to at least 12, including members of both the alpha and beta sub-groups. Analysis of the predicted protein sequences for the 12 OsAMT proteins identified many conserved phosphorylation sites in both the alpha and beta group members, which could potentially play a role in controlling the activity of the transporters. Present knowledge of the expression of rice AMT genes is also summarized in detail. Future studies should focus on the structural and functional characteristics of OsAMT proteins to provide insight into the mechanism of ammonium uptake and its regulation in rice. Such research could improve utilization and decrease wastage of N fertilizer in rice cultivation. Rice grows in flooded paddy fields and takes up ammonium as the preferred nitrogen (N) source. Ammonium uptake is facilitated by a family of integral membrane proteins known as ammonium transporters found in all domains of life. However, the molecular mechanism and functional characteristics of the ammonium transporters (AMT) in rice have not been determined in detail yet. In this review, we report a genome-wide search for AMT genes in rice, resulting in the increase of the number of potential AMT proteins to at least 12, including members of both the alpha and beta sub-groups. Analysis of the predicted protein sequences for the 12 OsAMT proteins identified many conserved phosphorylation sites in both the alpha and beta group members, which could potentially play a role in controlling the activity of the transporters. Present knowledge of the expression of rice AMT genes is also summarized in detail. Future studies should focus on the structural and functional characteristics of OsAMT proteins to provide insight into the mechanism of ammonium uptake and its regulation in rice. Such research could improve utilization and decrease wastage of N fertilizer in rice cultivation.
出处 《Rice science》 SCIE 2009年第4期314-322,共9页 水稻科学(英文版)
基金 supported by the China Postdoctoral Science Foundation (Grant No. 20070421031) the National Basic Research Program of China (Grant No. 2007CB109303) Knowledge Innovation Project of the Chinese Academy of Sciences (Grant No. KSCX2-YW-N-002)
关键词 RICE ammonium transporter expression regulation phosphorylation site rice ammonium transporter expression regulation phosphorylation site
  • 相关文献

参考文献2

二级参考文献11

共引文献50

同被引文献209

引证文献17

二级引证文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部