期刊文献+

基于小波熵的低误报率人体热释电红外信号识别 被引量:5

Low false alarm rate human body recognition using pyroelectric infrared signal and wavelet entropy
下载PDF
导出
摘要 提出一种基于双密度双树复小波变换小波熵特征的热释电红外(PIR)信号人体识别方法。首先对人体和狗的PIR探测器输出信号进行去噪预处理,然后提取信号的双密度双树复小波变换的小波熵作为特征,最后采用最小二乘支持向量机对特征进行分类。实验结果表明:所提取的特征及分类方法对人体与狗的热释电红外信号的识别率可达93.6%。因此该识别方法能大大降低PIR探测器的误报率,并可进一步提升PIR探测器在安防和智能家居系统中应用。 A method for human body recognition using pyroelectric infrared (PIR) signal based on wavelet entropy (WE) of double-density dual-tree complex wavelet transform (DD-DT CWT) is proposed in the paper. The valid data is obtained by removing noise from original signal and then the wavelet entropy of DD-DT CWT is calculated. Least square support vector machine (LS-SVM) classifier is adopted to classify the feature vectors. Experiment results show that the proposed method has good ability to recognize human body and dog and the recognition rate is up to 93.6%. Therefore, the presented method can highly decrease false alarm rate and improve the application area of PIR detectors in security system and smart home system.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2009年第12期2485-2490,共6页 Chinese Journal of Scientific Instrument
基金 国家863高技术研究发展计划(2007AA01Z423) 国家"十一五"基础科研基金(C10020060355) 重庆市科技攻关计划(CSTC2007AC2018)资助项目
关键词 热释电红外探测器 双密度双树复小波变换 小波熵 最小二乘支持向量机 pyroelectric infrared (PIR) detector double-density dual-tree complex wavelet transform (DD-DT CWT) wavelet entropy (WE) least square support vector machine (LS-SVM)
  • 相关文献

参考文献13

  • 1FANG J S, HAO Q, BRADY D J, et al. Path-dependent human identification using a pyroelectric infrared sensor and Fresnel lens arrays[J]. Opt. Express, 2006(14):609- 624.
  • 2FANG J S, HAO Q, BRADY D J, et al. Real-time human identification using a pyroelectric infrared detector array and hidden Markov models[J].Opt. Express, 2006(14): 6643-6658.
  • 3FANG J S, HAO Q, BRADY D J, et al. A pyroelectric infrared biometric system for real-time walker recognition by use of a maximum likelihood principal components estimation (MLPCE) method[J]. Opt. Express, 2007(15):3271-3284.
  • 4GOPINATHAN U, BRADY D J, PITSIANIS N E Coded apertures for efficient pyroelectric motion tracking[J]. Opt. Express, 2003(11):2142-2152.
  • 5HAO Q, BRADY D J, GUENTHER B D, et al. Human tracking with wireless distributed pyroelectric sensors[J]. IEEE. Sensors Journal, 2006(6): 1683-1696.
  • 6SHANKAR M, BURCHETT J B, HAO Q, et al. Human-tracking systems using pyroelectric infrared detectors[J]. Optical Engineering, 2006(45): 106401-1-10.
  • 7程卫东,董永贵.利用热释电红外传感器探测人体运动特征[J].仪器仪表学报,2008,29(5):1020-1023. 被引量:55
  • 8高爱华,刘卫国,张伟,秦文罡.热释电探测器特性参数动态响应测量[J].西安工业大学学报,2007,27(3):205-208. 被引量:4
  • 9JAYAWARDENA A. Design of double density wavelet filter banks[J]. Signal Processing and Its Applications,2003(2):463-466.
  • 10NICK K. Image processing with complex wavelets[J]. Phil. Trans. Royal Society London A, 1999(357):2543- 2560.

二级参考文献9

  • 1[4]Lang S B,Das-Gupta D K.Pyroelectricity:Fundamentals and Application[ J ].Ferroelectrics Review,2000(2):217.
  • 2BAZIN A I, NIXION M S. Gait verification using probabilistic methods[ A]. Proceedings of 7th IEEE Workshop on Applications of Computer Vision, IEEE, 2005:50-55.
  • 3BODOR R, JACKSON B, PAPANIKOLOPOULOS N. Vision-based human tracking and activity recognition [ C ]. Proceedings of the 11th Mediterranean Conference on Control and Automation IEEE, 2003:150-155.
  • 4ZHOU H Y, HUH SH. A survey: Human movement tracking and stroke rehabilitation [ R ]. Tech. Rep. CSM-420 University of Essex, 2004.
  • 5JONES G D, HODGETTS M A, ALLSO P R E, et al. A novel approach for surveillance using visual and thermal images[ C]. Proceedings of the DERA IEE Workshop on Intelligent Sensor Processing IEEE, 2001:911-919.
  • 6FELLER S D, CULL E, KOWALSKI D, et al. Brady. Tracking and imaging humans on heterogeneous infrared sensor array for tactical applications [ J ]. Unattended Ground Sensor Technology and Applications IV, E. M. Carapezza, ed., Proc. SPIE, 2002,4743:168-175.
  • 7SEKMEN A S, WILKES M, KAWAMURA K. An application of passive human-robot interaction:human tracking based on attention distraction [ J ]. IEEE Trans. Syst. , Man Cybern, 2002 : A 32,248-259.
  • 8BAZIN A I, NIXON M S. Probabilistic combination of static and dynamic gait features for verification [ A ]. In: Proceedings of Biometric Technology for Human Identification Ⅱ. SPIE Defon - and Security Symposium [ C ]. Orlando, FL, United States, 2005,5579:23-30.
  • 9GEISHEIMER J L, MARSHALL W S, GRENEKER E. A continuous-wave (CW) radar for gait analysis[ J]. Proc. of IEEE. Signals, Systems and Computers, 2001,1:843- 838.

共引文献56

同被引文献51

引证文献5

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部