期刊文献+

改进MKPCA方法及其在发酵过程监控中的应用 被引量:13

Application of an improved multi-way kernel principal component analysis method in fermentation process monitoring
下载PDF
导出
摘要 针对间歇发酵过程缓慢时变和非线性等特点,提出一种基于滑动窗技术的多向核主元分析(MWMKPCA)方法。该方法结合了核主元分析(KPCA)和滑动窗口技术的优点,其中KPCA能有效解决过程数据的非线性问题,保证数据信息抽取的完整性;而滑动窗口技术能有效避免MKPCA在线应用时预报未来测量值所引入的误差,提高监控性能。对于已判断正常的新批次过程数据,将其加入模型参考数据库进行更新,从而提高间歇过程性能检测的准确性。将该方法应用到工业青霉素发酵过程的监控中,并与MPCA、MKPCA方法的监测性能进行了比较。结果表明:该方法能有效提取过程变量间的非线性关系,降低运行过程的误报率,对缓慢时变的间歇过程具有更可靠的检测性能。 Aiming at the complex nonlinear characteristic and slow time-varying behavior of batch process, a new method was developed based on a moving window MKPCA (multi-way kernel principal component analysis) for on-line batch process monitoring. The proposed method uses a moving window and does not require predicting the future value of the current batch; while the nonlinear characteristics within normal batch processes are cap- tured by using KPCA. It also enhances the reliability of the monitoring system through consecutively updating the database of normal batches. The proposed method is used to evaluate the industrial penicillin fermentation process data and is compared with traditional MPCA and MKPCA methods. Results show that the proposed method has better performance, can effectively extract the nonlinear relationships among the process variables, adapts to new normal operating conditions and decrease false alarm rate.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2009年第12期2530-2538,共9页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(60704036) 北京工业大学青年基金(97002011200701) 北京工业大学博士科研启动基金(52002011200707)资助项目
关键词 故障监测 多向核主元分析 多向主元分析 模型更新 发酵过程 fault detection multi-way kernel principal component analysis (MKPCA) multi-way principal component analysis (MPCA) model update fermentation process
  • 相关文献

参考文献12

  • 1汪志锋,袁景淇.动态MPCA在发酵过程监测与故障诊断中的应用[J].生物工程学报,2006,22(3):483-487. 被引量:8
  • 2LOUWERSE D J, SMILDE A K. Multivariate statistical process control of batch processes based on three-way models[J]. Chemical Engineering Science, 2000,55: 1225-1235.
  • 3AGUADO D, FERRER A. Multivariate SPC of a sequencing batch reactor for wastewater treatment[J]. Chemometfics and Intelligent Laboratory Systems, 2007, 85:82-93.
  • 4NOMIKOS E MACGREGOR J F. Multivariate SPC charts for monitoring batch process[J]. Technometrics, 1995,37(1):41-59.
  • 5LEE J M, YOO CH K, et al. Enhanced process monitoring of fed-batch penicillin cultivation using time-varying and multivariate statistical analysis[J]. Journal of Biotechnology, 2004,110:1119-1136.
  • 6SCHOLKOPF B, SMOLA A, MULLER K. Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural Computation, 1998,10(5):1299-1399.
  • 7YOO CH K, KRIS V. Multivariate nonlinear statistical process control of a sequencing batch reactor[J]. Journal of Chemical Engineering of Japan, 2006,39(1):43 -51.
  • 8LEE J M, YOO CH K. Nonlinear process monitoring using kernel principal component analysis[J]. Chemical Engineering Science, 2004,59(1):223-234.
  • 9YOO C K, VANROLLEGHEM P A. On-line adaptive and nonlinear process monitoring of a pilot-scale sequencing batch reactor[J]. Environmental Monitoring and Assessment, 2006,119:349-366.
  • 10樊立萍,于海斌,袁德成,徐阳.基于KPCA的SBR过程监视[J].仪器仪表学报,2006,27(3):249-253. 被引量:6

二级参考文献13

  • 1李运锋,袁景淇.神经网络预报在发酵过程异常诊断中的应用[J].生物工程学报,2005,21(1):102-106. 被引量:7
  • 2KOURTI T, MAC GREGOR J F. Multivariate statistical process control methods for monitoring and diagnosing process and product performance. J.Quality Technology, 1996,28:409-428.
  • 3ROSEN C, OLSSON G. Disturbance detection inwastewater treatment systems. Water Science Techno]ogy, 1998, 37(12):197-205.
  • 4LENNOX J. Multivariate subspaees for fault detection and solation,with applications to the wastewater treatment process. Australia:University of Queensland, 2002.35-68.
  • 5TEPPOLA P, MUJUNEN SP, MINKKINEN P.Adaptive fuzzy c-means clustering in process monitoring. Chemometrics Intell. Lab. Syst. , 1999,45:23-38.
  • 6SCHOLKOPFB, SMOLA A, MullER K. Nonliear component analysis as a kernel eigenvalue problem. Neural Computation, 1998, 10(5):1299-1319.
  • 7LEE J M, YOO C, CHOI S W, et al. Non-linear process monitoring using kernel principal component analysis. Chemical Engineering Science, 2004, 59:223-234.
  • 8Louwerse D J, Smilde AK. Multivariate statistical process control of batch processes based on three-way modds. Chemical Engineering Science ,2000,55 : 1225 - 1235
  • 9Nomikos P, MacGregor JF. Monitoring batch process using muhiway principal component analysis. AIChE Journal, 1994,40(8) : 1361 -1375
  • 10Ku W, Storer RH, Georgakis C. Disturbance detection and isolation by dynamic principal component analysis. Chemometrics and Intelligent Laboratory Systems, 1995,30:179 - 196

共引文献12

同被引文献106

引证文献13

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部