期刊文献+

基于ARM与WinCE的掌纹鉴别系统 被引量:20

Palmprint identification system based on ARM and WinCE
下载PDF
导出
摘要 掌纹识别是个人身份识别的一种有效手段,而识别设备的小型化则将掌纹鉴别推向更广阔的应用领域。实现了一种基于ARM和WinCE的掌纹鉴别系统方案,ARM处理器从数字摄像头获取掌纹图像,提取特征,与掌纹特征库中的对应模板比对,根据匹配的结果给出一个开关信号量。实验证明该系统能以较高精度鉴别掌纹,软件采用的算法具有平移、旋转不变,光照与仿射部分不变等优点,对手掌的姿态、距离、位置变化具有较高的容纳能力,用非接触式的掌纹采集方式,不需要定位装置,充分体现该系统的用户亲和力。此外,该系统还具有体积小、成本低、低功耗等优点,适合应用于成本和功耗敏感的民用系统中。 Palmprint recognition is an efficient method to identify a person. The small size of palmprint identification equipment will facilitate applications and extend application scope. This paper implements a practical schema of the palmprint identification system based on ARM and WinCE. The ARM processor acquires the palm image from a digital camera, extracts the features from the palm image and matches the feature with corresponding template in the database, finally gives out the identification result. Experimentations proved that the proposed system could identify palmprints with high accuracy. Fur- thermore, the proposed algorithm is invariant to image translation and rotation, and is partially invariant to affine distortion, image scale, changes in 3D viewpoint and illumination. The palmprint could be captured in contactless manner and does not need any fixing facility, which is much friendly to the users. Besides, the proposed system has the merits of small size, cost-effective and low-power, which are appropriate to be adopted in power and cost sensitive civilian applications.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2009年第12期2624-2628,共5页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(60473106) 国家863项目(2007AA01Z311 2007AA04Z1A5) 教育部博士学科点基金(20060335114) 浙江省科技计划(2007C21006)资助项目
关键词 掌纹鉴别 ARM WINCE 角点检测 特征描述子 palmprint identification ARM WinCE corner detector feature descriptor
  • 相关文献

参考文献8

  • 1杨帆,杨瑞霞,赵玉刚,王忠理.基于模糊神经网络的指纹与掌纹信息融合技术[J].仪器仪表学报,2006,27(z3):2313-2314. 被引量:1
  • 2罗毅,谭增显,吕跃刚,田涛.基于WinCE的控制系统优化整定仪的设计与开发[J].仪器仪表学报,2003,24(z1):519-521. 被引量:5
  • 3COMANICIU D, MEER E Mean shift: A robust approach[J]. IEEE Trans. Pattern analysis and Machine Intelligence, 2002,24(5):603-619.
  • 4OSTU N. A Threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979,9(1):62-66.
  • 5SHI J, TOMASI C. Good features to Track[C]. IEEE Conference on Computer Vision and Pattern Recognition, 1994. Seattle, 1994:593-600.
  • 6LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004,2 (60) :91 - 110.
  • 7FISCHLER M A, BOLLES R C. Random sample consensus: A Paradigm for model fitting with apphcatlons to image analysis and automated cartography[J]. Communications of ACM, 1981,24(6):381-389.
  • 8CHUM O, MATAS J. Matching with PROSAC-progressive sample consensus[C]. Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), 2005:220-226.

二级参考文献7

共引文献4

同被引文献201

引证文献20

二级引证文献93

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部