期刊文献+

基于遗传算法求解游戏关卡问题 被引量:3

Using Genetic Algorithm to solve the issue of game points
下载PDF
导出
摘要 目前,基于角色扮演的游戏越来越多,为增加趣味性,游戏中存在着很多关卡。为了提高关卡的难度,很多关卡都和迷宫结合在一起,玩家不但要闯迷宫,还要打败BOSS。如何设定一个机器人来实现自动过关,这是一个很具挑战的事。本文基于遗传算法建立一个自动过关模型,该模型对机器人行动方向进行编码,使用多参数评估函数等来实现机器人自动过关,并和情境法进行了对比。实验表明该模型能够有效的解决游戏过关卡问题。 At present, the Role Playing Game is becoming more and more popular. In order to increase the interest of the game, there are quite a few game points in the game. For the purpose of increasing the difficulty of game points, many game points are combined with the maze, the player must not only break through the maze, but also need to defeat the BOSS. How to set a robot to achieve the automatic clearance is a very challenging thing. In this paper, we establish an automatic model based on genetic algorithms. The model encodes the direction of robot actions, the use of multi-parameter assessment of function, such as to achieve the robot automatic clearance. Then we compare the result with situational method. The model experiments show that genetic algorithm is an effective solution to the problem of the game checkpoints.
出处 《信息通信》 2009年第6期31-35,15,共6页 Information & Communications
关键词 遗传算法 游戏关卡 机器人 角色扮演游戏 情境法 Genetic algorithm Game points Robot Role Playing Game Situational method.
  • 相关文献

参考文献11

  • 1Melanie Mitchell. An Introduction to Genetic Algorithms. MIT Press, 1998.
  • 2Lotte Berghman,Dries Goossens,Roel Leus. Efficient solutions for Mastermind using genetic algorithms. Computers & Operations Research, 2009(36):1880.
  • 3Bong-Keun Lee, Choong-Shik Park, Jae-Hong Kim, Sang-Jo Youk and Keun Ho Ryu. An Intelligent NPC Framework for Context Awareness in MMORPG. International Conference on Convergence and Hybrid Information Technology, 2008:190.
  • 4Gary B. Parker, Matt Parker. Evolving Parameters for Xpilot Combat Agents. Computational Intelligence and Games, 2007, April:238.
  • 5Sushil J: Louis, Member, IEEE, and Chris Miles. Playing to Learn: Case-Injected Genetic Algorithms for Learning to Play Computer Games.IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2005,9(6):669.
  • 6王斌,李元香.用遗传算法解迷宫问题[J].微型机与应用,2002,21(10):58-60. 被引量:6
  • 7廖国勇,王广超.用遗传算法解迷宫问题[J].华东交通大学学报,2006,23(2):138-140. 被引量:10
  • 8龚向宇,徐东平.优化的遗传算法在游戏编程中的应用[J].电脑知识与技术(过刊),2007(2). 被引量:2
  • 9付朝晖,丁梦,喻昕.游戏编程中的寻路算法研究[J].湖南工业大学学报,2007,21(4):84-87. 被引量:5
  • 10杨科选,梁昔明.遗传算法在游戏开发中的应用[J].计算机系统应用,2009,18(5):128-130. 被引量:3

二级参考文献11

  • 1金朝红,吴汉松,李腊梅,王树人.一种基于自适应遗传算法的神经网络学习算法[J].微计算机信息,2005,21(10S):49-51. 被引量:30
  • 2陈和平,张前哨.A~*算法在游戏地图寻径中的应用与实现[J].计算机应用与软件,2005,22(12):118-120. 被引量:34
  • 3何国辉,陈家琪.游戏开发中智能路径搜索算法的研究[J].计算机工程与设计,2006,27(13):2334-2337. 被引量:32
  • 4Michael Dickheiser.游戏编程精粹.北京:人民邮电出版社,2007:176-255.
  • 5Bourg DM.Seemann G.游戏开发中的人工智能.南京:东南大学出版社,2006.
  • 6Buckland M.游戏编程中的人工智能技术.北京:清华大学出版社,2006.
  • 7[2]N.Baba et al.A Gaming Approach to the Acid Rain Problem,Simulation & Games,1984,15:305-314.
  • 8[4]Mustafa K.Mehmet Ali,Faouzi Kamoun.Neural Networks for shortest Path Computation and Routing in Computer Networks.IEEE Trans.Neural Networks.Vol.4,No.6,1993,11:941~954.
  • 9[5]De Jong k A.An analysis of the Behavior of a Class of Genetic Adaptive Systems.Ph.D Dissertation,University of Michigan,No.76-9381,1975.
  • 10李敏强 等.遗传算法的基本理论与应用[M].北京:科学出版社,2003..

共引文献20

同被引文献8

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部