期刊文献+

部分浸入水中弹性支承Timoshenko梁动力特性 被引量:2

Dynamic Characteristics of Timoshenko Beam Partly Immersed in Water on Coupled Elastic Foundation
下载PDF
导出
摘要 研究了部分浸入流体中自由端具有集中质量块的等截面弹性支承Timoshenko悬臂梁横向振动的固有频率和振型特征.考虑梁横截面转动和剪切变形以及集中质量块引起轴向压力的影响,建立了支承处弹性水平位移约束和转动约束耦合情形下悬臂梁横向自由振动的数学模型.由于集中质量块的惯性力和惯性矩,此模型的边界条件与振动频率相关.推导了Timoshenko梁的频率方程和振动模态的广义正交条件.数值研究了集中质量块质量、转动惯量、质心距以及弹簧刚度系数等参数对Timoshenko悬臂梁固有频率的影响.数值结果表明:由于横截面转动和剪切变形效应的影响,相比于Eu ler-Bernou lli梁模型,Timoshenko梁的固有频率减小,对高阶频率的影响尤为显著;弹簧刚度耦合项的增大将减小梁的固有频率;轴向力的增加将减小梁的低阶固有频率,但对高阶固有频率的影响不大. Natural frequencies and the corresponding modes of an elastically supported cantilever Timoshenko beam carrying a tip mass partly immersed in water are investigated.Taking into account the effects of the cross-section rotation,shear distortion and compression axial force due to the tip mass,the mathematical model for free vibration of a cantilever beam is presented,in which constraints of the elastic horizontal displacement and elastic rotation are coupled.Due to the inertial force and inertial moment of the tip mass,boundary conditions of the mathematical model are frequency dependent.The frequency equation and the generalized orthogonal condition for the vibration modes are established.Influences of tip mass,moment of inertia,location of tip mass and coupled spring-stiffness coefficient,etc.,on the natural frequencies are presented numerically and discussed.It is shown that,compared with the model of Euler-Bernoulli beam,due to the cross-section rotation and shear distortion of the beam,the natural frequencies of the Timoshenko beam decrease,especially for the higher order natural frequencies.The addition of coupled spring-stiffness coefficient will reduce the natural frequencies to different extent,and the axial force reduces the lower order natural frequencies while has a negligible influence on the higher order ones.
出处 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第6期566-575,共10页 Journal of Shanghai University:Natural Science Edition
基金 上海市自然科学基金资助项目(06ZR14037)
关键词 TIMOSHENKO梁 固有频率 正交条件 耦合刚度 Timoshenko beam natural frequency orthogonality condition coupled stiffness
  • 相关文献

参考文献20

  • 1JONKMAN J M, SCLAVOUNOS P D. Development of fully coupled aeroelastic and hydrodynamic models for offshore wind turbines [ C ] // 2006 ASME Wind Energy Symposium, Reno, Nevada. 2006:10-12.
  • 2张大刚.深海油田的开发——当前国际应用及发展趋势[J].中国造船,2005,46(4):41-46. 被引量:12
  • 3CHANG J Y, LIU W H. Some studies on the natural frequencies of immersed restrained column [ J ]. Journal of Sound and Vibration, 1989, 130(3) :516-524.
  • 4USCILOWSKA A, KOLODZIEJ J A. Free vibration of immersed column carrying a tip mass [ J ]. Journal of Sound and Vibration, 1998, 216(1) :147-157.
  • 5OZ H R. Calculation of the natural frequencies of a beam-mass system using finite element method [ J ]. Mathematical and Computational Applications, 2000, 5 (2) :67-75.
  • 6OZ H R. Natural frequencies of an immersed beam carrying a tip mass with rotatory inertia [ J ]. Journal of Sound and Vibration, 2003, 266(5) : 1099-1108.
  • 7WU J S, LINT L. Free vibration analysis of a uniform cantilever beam with point masses by an analytical-and- numerical-combined method [ J ]. Journal of Sound and Vibration, 1990, 136(2) :201-213.
  • 8WU J S, HSU S H. A unified approach for the free vibration analysis of an elastically supported immersed uniform beam carrying an eccentric tip mass with rotary inertia [J].Journal of Sound and Vibration, 2006, 291 (3) :1122-1147.
  • 9WU J S, HSU S H. The discrete methods for free vibration analysis of an immersed beam carrying an eccentric tip mass with rotary inertia [ J ]. Ocean Engineering, 2007, 34( 1 ) :54-68.
  • 10ABRAMOVICH H, HAMBURGER O. Vibration of a cantilever Timoshenko beam with a tip mass [ J ]. Journal of Sound and Vibration, 1991, 148 ( 1 ) : 162-170.

共引文献11

同被引文献23

  • 1谢文会,唐友刚,周满红.深水铰接塔平台的非线性动力特性分析[J].工程力学,2006,23(9):36-41. 被引量:5
  • 2McCallion H. Vibration of linear mechanical system Natural frequencies of beams under compressive axial loads [J]. Journal of sound and vibration, 1988,126 ( 1 ) :49 - 65.
  • 3Bokaian A. Natural frequencies of beams Under compressive axial loads [ J ]. Journal of sound and vibration, 1988, 126(1) :49 -65.
  • 4Bokaian A. Natural frequencies of beams under tensile axial loads [ J ]. Journal of Sound and Vibration, 1990,142(3) :481 -498.
  • 5Naguleswaran S. Vibration and stability of an Euler-Bernoulli beam with up to three-step changes in cross-section and in axial force[ J]. International journal of mechanical sciences ,2003,45 (9) : 1563 - 1579.
  • 6Kukla S,Zamojska I. Frequency analysis of axially loaded stepped beams by Green' s function method [ J ]. Journal of Sound and Vibration ,2007 (300) : 1034.
  • 7Q!bo Mao, Stanislaw Pietrzko. Free vibration analysis of stepped beams by using Adomian decomposition method [ J ]. Applied Mathematics and Computation, 2010 : 3429 - 3441.
  • 8Qibo Mao. Free vibration analysis of multiple-stepped beams by using Adomian decomposition method [ J ]. Mathematical and Computer Modelling, 2011, 25:756 -764.
  • 9USCILOWSKA A, KOLODZIEI J A. Free vibration of immersed column carrying a tip mass[J]. Journal of Sound and Vibration, 1998, 216(1): 147-157.
  • 10Oz H R. Natural frequencies of an immersed beam car- rying a tip mass with rotary inertia[J]. Journal of Sound and Vibration, 2003, 266(5): 1099-1108.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部