摘要
本文研究了具有脉冲和时滞效应的Logistic模型.利用脉冲微分方程的比较定理,Bohl-Brower不动点定理和Lyapunov函数法,获得了系统持续生存,正周期解存在、唯一以及全局吸引的充分条件.结果表明正周期解的全局吸引性与时滞有关.
In this article, a delay Logistic system governed by impulsive effects is investigated. By using comparison theorem, it is proved that the system is permanent under some appropriate conditions. Further, a set of sufficient conditions which guarantee the existence, uniqueness and global attractivity of positive periodic solution are obtained by using Bohl-Brower fixed point theorem and Lyapunov function. The result demonstrates that the global attractivity of the positive periodic solution depends on time delay.
出处
《数学杂志》
CSCD
北大核心
2010年第1期10-14,共5页
Journal of Mathematics
基金
Supported by National Natural Science Foundation of China(101711Q6)
关键词
脉冲
时滞
持续生存
正周期解
吸引性
impulsive
delay
permanence
positive periodic solution
attractivity