期刊文献+

具有脉冲和时滞的Logistic模型的持续生存和正周期解的全局吸引性(英文)

GLOBAL ATTRACTIVITY OF THE POSITIVE PERIODIC SOLUTION OF A DELAY LOGISTIC POPULATION MODEL WITH IMPULSES
下载PDF
导出
摘要 本文研究了具有脉冲和时滞效应的Logistic模型.利用脉冲微分方程的比较定理,Bohl-Brower不动点定理和Lyapunov函数法,获得了系统持续生存,正周期解存在、唯一以及全局吸引的充分条件.结果表明正周期解的全局吸引性与时滞有关. In this article, a delay Logistic system governed by impulsive effects is investigated. By using comparison theorem, it is proved that the system is permanent under some appropriate conditions. Further, a set of sufficient conditions which guarantee the existence, uniqueness and global attractivity of positive periodic solution are obtained by using Bohl-Brower fixed point theorem and Lyapunov function. The result demonstrates that the global attractivity of the positive periodic solution depends on time delay.
出处 《数学杂志》 CSCD 北大核心 2010年第1期10-14,共5页 Journal of Mathematics
基金 Supported by National Natural Science Foundation of China(101711Q6)
关键词 脉冲 时滞 持续生存 正周期解 吸引性 impulsive delay permanence positive periodic solution attractivity
  • 相关文献

参考文献4

  • 1Chen Y. Periodic solutions of a delayed periodic logistic equation[J]. Appl. Math. Lett., 2003, 16(7): 1047-1051.
  • 2Bainov D, Simeonov P. Impulsive differential equations: periodic solutions and applications[M]. New York: Longman Scientific and Technical, 1993.
  • 3Liu X, Chen L. Global dynamics of the periodic logistic system with periodic impulsive perturba- tions[J]. J. Math. Anal. Appl., 2004, 289(4): 279-291.
  • 4Hale J. Theorem of functional defferential equations[M]. New York: Spinger-Verlag, 1997.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部