期刊文献+

在不完全观察的漂移过程中达到一个目标的最大化概率

Maximum Probability of Reaching a Goal in a Partially Observed Drift Process
下载PDF
导出
摘要 对一个具有原始财产X0(<1)的投资者,当股市的涨落没有被直接观察,而仅仅是用计算的方法建立平均返回扩散模型时,他为了实现一个目标XT=1,如何达到最大的概率?在采用鞅方法的同时,以一个推广的Cameron-Martin公式就能如财富过程一样直接计算价值过程,从而采用Martin公式,可以确定动态的最优配制。 Without directly observing stock fluctuations but establishing a modal by calculation method, an investor with initial wealth XO( 〈 1 ) wants to realize a goal XT = 1, how to reach the maximum probability? By adopting martingale approach, a generalized Cameron - Martin formula can be used directly to calculate the value process like wealth process. So the dynamic optimal allocation can be determined by adopting Martin formula.
作者 骆文辉
出处 《成都纺织高等专科学校学报》 CAS 2010年第1期25-30,共6页 Journal of Chengdu Textile College
关键词 Bayes适当控制 ORNSTEIN-UHLENBECK过程 投资组合 目标问题 Cameron-Martin公式 Bayes proper control, Ornstein - Uhlenbeck process, portfolio investment, goal problem,Cameron - Martin formula
  • 相关文献

参考文献8

  • 1G. Zohar, Dynamic portfolio optimization in the case of partially observed drift process ( to appear in Mathematical Finance).
  • 2I. Karatzas, Adaptive control of a diffusion to a goal and a parabolic Monge - Amperer - type Equation, Asian J. Math. 1 (2) ( 1997 )295 - 313.
  • 3R. H. Cameron and W. T. Martin, Evaluation of various Wiener integrals by use of certain Sturm - Liouville differential equations, Bull. Amer. Math. Soc. 51 (1945)73 - 90.
  • 4J. Cvitanic and G. Spivak, Maximizing the probability of a perfect hedge, Ann. App. Prob. 9 ( 4 ) ( 1999 ) 1303 - 1328.
  • 5W. H. Fleming, Notes on partially observed portfolio management problem ( unpublished notes , 1998).
  • 6D. Heath, Aconfinuous - time version of Kullorff' s result( unpublished manuscript, 1993 ).
  • 7I. Karatzas, Lecture Notes on Mathematical Finance, AMS(1997).
  • 8I. Karatzas and S. Shreve, Brownian Motion and Stochastic Calculus,Springer Verlag( 1987 ).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部