期刊文献+

两种带约束的序列比对算法

Two Algorithms for Constrained Sequence Alignment Problem
下载PDF
导出
摘要 通过理论证明,得出了当距离函数中惩罚因子φ=0时的解应满足的条件,并在此基础上改进两种最长公共子序列的优化算法,使之能够求解出带约束的序列比对问题。这两种改进算法的时间复杂度分别为O(nmr)和O(nm(r+1)),空间复杂度分别为O(nmr)和O((n+m)(r+1))。推导出算法应满足在两序列中插入的空位符数目分别为(m-l)和(n-l),使比对结果中不会出现错配,保证了比对的质量。实现了基于回溯的改进算法,验证了其求解带约束的序列比对问题的有效性。 Constrained sequence alignment,a new problem,demands the alignment result including the constraint sequence. Algorithms of this problem could be more complicated. In this paper,two conditions to slove the constrained sequence alignment problem are demonstrated theoretically when the penalty factor φ in the distance function is 0. The two algorithms for the longest common subsequence problem is extended to solve CSA problem. The time complexities of the two improved algorithms are O(nmr) and O(nm(r + 1)) and the space complexities are O(nmr) and O((n + m)(r + 1)), respectively. The results of the two algorithms are exact without mismatchs when the numbers of " -" inserted into X and Y are (m - l) and (n - l), respectively. The experiments prove the validity of the two algorithms.
出处 《江南大学学报(自然科学版)》 CAS 2009年第6期653-656,共4页 Joural of Jiangnan University (Natural Science Edition) 
基金 国家自然基金项目(30671639) 江苏省自然科学基金项目(BK2005134)
关键词 生物信息学 带约束的序列比对 距离函数 回溯 分而治之 bioinformatics, constrained sequence backtracking, divide-and-conquer alignment, distance function,
  • 相关文献

参考文献3

二级参考文献32

  • 1李军焘,刘来福.生物序列比对的数学模型及应用[J].数学的实践与认识,2005,35(1):5-11. 被引量:2
  • 2[3]T K Atwood,D J Parry-Smith著,罗静初等译,生物信息学概论[M].北京:北京大学出版社,2001:141-145.
  • 3[4]D.L.Brutlag,J.P.Dautricourt,S.Maulik,and J.Relph.Improved sensitivity of biological sequence of biological sequence database searches[J].Comp.Appl.Biosciences,1990(6):237-245.
  • 4[5]Chivian D and Baker D.Homology modeling using parametric alignment ensemble generation with consensus and energy-based model selection[J].Nucleic Acids Research,2006,34(17):e112.
  • 5[6]Jaroszewski L.,Li.W.and Godzik A,In search for more accurate alignments in the twilight zone[M].Protein Science,2002,11:1702-1713.
  • 6[7]Lior Pachter and Bemd Sturmfels..Parametric inference for biological sequence analysis[M].USA:National Academy of Science,.2004,101 (46):16138-16143.
  • 7[8]W.M.Fitch and T.F.Smith.Optimal sequence alignments[M].USA:National Academy Science,1983(80):1382-1386.
  • 8[9]D.Gusfield.Algorithms on Strings,Trees and Sequences.Computer Science and Computational Biology[M].Cambridge University Press,1997.
  • 9[10]JW Brown.The Ribonuclease P Database[J].Nucleic Acids Research,1999,27(1):314.
  • 10Batzoglou S.The many faces of sequence alignment.Briefings in Bioinformatics,2005,6(1):6-22.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部