摘要
基于人工神经网络的理论,提出了快速识别数字调制信号的方法:1)BP神经网络量化共轭梯度算法;2)径向基(RBF)神经网络法;3)小波系数的BP和RBF神经网络法。这些方法收敛速度快,性能好,仿真结果说明了这些方法的有效性。
The methods of fast recognition about digital modulation signals based on ANNs are presented in this paper. The first is using the scaled conjugate gradient algoritbm in the BP neural network; the second is using RBF neural network; the third is using wavelet coefficients in the BP and RBF neural network. These methods own fast convergency and good performance. The result of simulations proves the effectiveness of the methods.
出处
《洛阳理工学院学报(自然科学版)》
2009年第4期60-63,共4页
Journal of Luoyang Institute of Science and Technology:Natural Science Edition
关键词
量化共轭梯度算法
RBF神经网络
小波变换
数字调制信号
模式识别
scaled conjugate gradient algorithem
RBF neural network
wavelet transform
digital moduation signals
pattern recognitionpecialty