摘要
支持向量回归机是数据挖掘的新方法。针对支持向量回归机所对应的回归问题给出了其解二阶充分条件成立的理论结果,结果表明支持向量回归机优化问题的解在一个很弱假设下即可满足二阶充分性;该理论为支持向量回归机优化问题解的灵敏度分析奠定了一定基础。
Support vector regression (SVR) is a new method for data mining. This paper presents one condition for second order sufficient property of support vector classification to hold. The condition is so weak that support vector classification meets it easily. The theory provides an important foundation for sensitivity analysis of SVR.
出处
《河北科技大学学报》
CAS
北大核心
2009年第4期294-297,378,共5页
Journal of Hebei University of Science and Technology
基金
北京联合大学应用文理学院基金资助项目(20080206)
关键词
数据挖掘
支持向量回归机
灵敏度分析
机器学习
data mining
support vector regression
sensitivity analysis
machines learning