期刊文献+

纸厂污水处理COD控制系统应用研究

Application and Research of Sewage Treatment COD Control System
下载PDF
导出
摘要 为了通过曝气使活性污泥得到足够的氧气,使水中的可溶性有机污染物被活性污泥吸附,并被存活在活性污泥上的微生物分解,污水得到净化;针对污水处理过程控制对象的非线性、时变性以及不确定性等特点,提出了一种基于模糊自适应PID的控制方法,引入调整因子的污水处理COD自适应模糊控制系统,通过调节曝气机频率,将COD稳定地控制在理想的数值,该系统以Siemens S7编程实现;结果表明该控制系统弥补了常规PID和单纯模糊控制的不足,获得了更好的控制效果,提高了污水处理效率;该控制系统有效地解决了曝气生物滤池工艺中曝气过程的时变性、干扰多、变量耦合用常规PID控制效果不理想的状况,对于控制对象模型不好建立的控制对象,具有很好的控制效果。 In order to enable the adoption of enough oxygen and make water soluble organic compounds absorpted by the activated sludge. The microbial in the activated sludge decomposite it and make sewage purificate. To consider the characteristics of Sewage treatment process , such as non--linear, time--variant and uncertainty, the system applies fuzzy adaptive PID as control algorithm. The introduction of the adjustment factor of the sewage treatment system can stably control COD in an ideal state by regulating the frequency aerators. The control algorithm is controlled by Siemens S7. The results show that the system which can remedy the shortages of PID and fuzzy control has the advantages of effective control.
出处 《计算机测量与控制》 CSCD 北大核心 2009年第12期2449-2451,2478,共4页 Computer Measurement &Control
关键词 模糊自适应PID 化学需氧量(COD) SiemensS7 fuzzy adaptive PID Chemical Oxygen Demand Siemens S7
  • 相关文献

参考文献10

二级参考文献28

  • 1刘军,孙发东,白华煜.基于模糊神经网络自适应控制研究[J].科学技术与工程,2005,5(1):55-58. 被引量:8
  • 2彭永臻.SBR法的五大优点[J].中国给水排水,1993,9(2):29-31. 被引量:177
  • 3唐受印 等.废水处理工程[M].北京:化学工业出版社,1999..
  • 4Hurowitz, Scott E; Bobkov,Andrei;Riggs,James B.pH control using advanced proportional -integral controls with the dual -injection in -line process[J] .Ind Eng Chem Res, 2000, 39(7), 2418~2426.
  • 5Tzeng, Chwen -Jeng; Iranpour, Reza; Stenstrom, Michael K. Modeling and control of oxygen transfer in high purity oxygen activated sludge process[J]. Environ. Eng., 2003, 129(5): 402~411.
  • 6Riesco, J.; Calvo, J.; Martin -Sanchez, J.M.Adaptive predictive expert (ADEX) control: Application to waste water treatment plants [C]IEEE Conference on Control Applications Proceedings, Glasgow, United Kingdom, 2002.
  • 7Bernard, O.; Polit, M.; Hadj -Sadok, Z. et al. Advanced monitoring and control of anaerobic wastewater treatment plants: Software sensors and controllers for an anaerobic digester [J] . Water Sci. Techn, 2001, 43(7): 175 ~ 182.
  • 8Flores ,J. ;Areay, B. ;Arias,J. Intelligent system for distributed control of an anaerobic wastewater treatment process[J] .Eng Appl Artif Intell,2000, 13(4): 485 ~ 494.
  • 9Tay, Joo -Hwa, Zhang Xiyue. Fast predicting neural fuzzy model for high -rate anaerobic wastewater treatment systems [ J ]. Water Res, 2000,34(11) :2849 ~ 2860.
  • 10Carrasco, E. F.; Rodriguez, J.; Punal, A. et al. Expert system for the on-line diagnosis of anaerobic wastewater treatment plants[J] . Control Eng. Pract, 2004, 12( 1 ): 59 ~ 64.

共引文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部