期刊文献+

嫩江流域径流的可预报性及其时间尺度分析 被引量:3

Analysis of Predictability and Time Scales for the Nenjiang River Runoff
下载PDF
导出
摘要 本文在阐述径流过程主要影响因素和表现特征基础上,采用混沌理论,对于嫩江流域月径流过程系统进行了延滞时间、嵌入纬度、关联维数等计算,进而进行相空间重构,计算出其最大Lyapunov指数为0.13,说明该系统具有混沌特征。初步得出如下结论:①嫩江流域中长期径流预报的预见期为7~8个月;②"数据驱动模型"对于中长期径流预报更有其方法的适用性;③中长期径流预报计算时段应以月为单位。 In this paper,chaos theory was used to compute delay time,embedding dimension and strangeness of strange attractors of the monthly runoff process of the Nenjiang River based on the main influencing factors and the expressive characteristics of the runoff process.And then the phase space was reconstructed and the value of the maximum Lyapunov exponent was 0.13,which indicated that the system is characteristic by chaos.The initial conclusions are as follows: ① The forecast period of the long-and medium-term runoff forecasting of the Nenjiang River ranges from 7 to 8 month.② Data-Based Model is more suitable for long-and medium-term runoff forecasting.③ The unit of the calculation interval of the long-and medium-term runoff forecasting should be month.
出处 《水文》 CSCD 北大核心 2009年第6期20-23,27,共5页 Journal of China Hydrology
基金 国家自然科学基金项目(50879028)
关键词 混沌理论 可预报性 时间尺度 预见期 中长期径流预报 chaos theory predictability time scale forecast period long-and medium-term runoff forecasting
  • 相关文献

参考文献13

  • 1Amilcare P,Luca R. Nonlinear analysis of river flow time sequences [J]. Water Resources Research, 1997,33(6) : 1353-1367.
  • 2Sivakumar B,Phoon K K,Liong S Y,Liaw C Y. Comment on "Nonlinear analysis of river flow time sequences" by Amileare Porporato and Luca Ridolfi [J]. Water Resources Research,1999,35 (3) :895-897.
  • 3Hensc A. On the Possible existence of a strange attractor for the Southern Oscillation [J]. Bectr. Phys. Atmosph.,1987,60(1):34--47.
  • 4Wilcox B P. etc. Searching for chaotic dynamic in snowmelt runoff[J]. Water Resources Research, 1991,27(6) : 1005-1010.
  • 5傅军,丁晶,邓育仁.洪水混沌特性初步研究[J].水科学进展,1996,7(3):226-230. 被引量:39
  • 6温权,张勇传,张周胜.基于混沌动力学的日径流时间序列预测[J].华中理工大学学报,1998,26(12):62-64. 被引量:7
  • 7权先璋,温权,张勇传.混沌预测技术在径流预报中的应用[J].华中理工大学学报,1999,27(12):41-43. 被引量:12
  • 8林振山.大气(气候)系统可预报性问题的讨论[J].地球物理学报,1999,42(S1):13-17. 被引量:4
  • 9Henry D.I. Abarbanel. The analysis of observed chaotic data in Physical systems [J], Reviews of Modem Physics,1993,65 (4): 1331-1392.
  • 10P. Grassberger, I. Proeaceia. Measuring the strangeness of strange attractors [J], Physical D, 1983, (9) : 189-208.

二级参考文献9

共引文献116

同被引文献40

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部