期刊文献+

中国宏观经济指标预警信号的分析(英文)

Some Investigations on Monitoring Signals of Macro-economic Climate Index of China
下载PDF
导出
摘要 近来,中国国家统计局公布了从2008-05到2009-04之间中国宏观经济指标预警信号.基于这些预警信号,我们建立了一个信息系统.在这个信息系统中,商业周期信号指标作为决策属性,工业生产指数、固定资产投资、消费品零售总额、进出口总额、财政收入、工业企业利润、居民可支配收入、金融机构各项贷款、货币供应M2以及居民消费价格指数作为条件属性.我们应用粗糙集理论分析了每一个条件属性关于决策属性的重要性以及每一个条件属性支持决策属性的强度.这些结果对我国政府指定积极的宏观经济政策,使我国经济能够继续保持稳步、较快的发展,具有一定的理论意义. Recently, National Bureau of Statistics of China has released monitoring signals of macro-economic climate index of China from 2008-05 to 2009-04.Based on these monitoring signals, we establish an information system. In this information system, business cycle signal index is taken as a decision attribute and the index of industrial production, investment of fixed assets, the total retail sales of consumer goods, import and export volume, revenue, the profits of industrial enterprises, residence disposable income, financial institutions loans, money supply M2, CPI are taken as condition attributes. We use rough-set theory (Rough-set theory is a logic-mathematical method proposed by Z. Pawlak. In recent years, this theory has been widely implemented in the many fields of natural science and societal science.) to investigate the importance of each condition attribute with respective to decision attribute and the strength of each condition attribute supporting decision attribute. Results of this investigation will be helpful for Chinese government to make active macro-economic policy and to maintain the steady and relatively fast development of Chinese economy.
作者 陈敏 葛英
出处 《漳州师范学院学报(自然科学版)》 2009年第4期146-154,共9页 Journal of ZhangZhou Teachers College(Natural Science)
关键词 宏观经济 景气指标 预警信号 粗糙集 重要性 强度 macro-economic climate index monitoring signal rough set importance strength
  • 相关文献

参考文献20

  • 1Alvatore G, Bentto M, Roman S. Rough set theory for multi criteria decision analysis[J]. European Journal of Operational Research, 2001, 129: 1-47.
  • 2Cheng Y, Ge Y. Influencing factors with respect to basic essence in national defence for Chinese university students [C]. 2008 International Symposium on Computer Science and Computational Technology, 2008, 2: 528-531.
  • 3Donna C. Artificial interagency research in Japan[J]. Artificial Intelligence, 1997, 91: 122-129.
  • 4Erbert A. Scientific discovery and simplicity of method[J]. Artificial Intelligence, 1997, 91: 177-181.
  • 5Ge X. Some investigations on higher mathematics scores for Chinese university students]J]. International Journal of Computer and Information Science and Engineering, 2009, 3(1): 46-49.
  • 6Ge Y. Granularity-wise separation in covering approximation spaces[C]. 2008 IEEE International Conference on Granular Computing, 2008, 238-243.
  • 7Golan R, Ziarko W. Methodology for stock market analysis utilizing rough set theory[J]. Proc. of IEEE/IAFE Conference on Computational Intelligence for Financial Engineering, 1995, 22: 32-40.
  • 8Pawlak Z. Rough sets[J]. International Journal of Computer and Information Sciences, 1982, 11: 341-356.
  • 9Pawlak Z. Rough sets[M]. Theoretical Aspects of Reasoning About Data, Kluwer Academic Publishers, 1991.
  • 10Pawlak Z. Rough sets[J]. Communications of ACM, 1995, 38: 89-95.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部