期刊文献+

宽带雷达目标检测中的杂波抑制处理

Clutter Suppression Processing for Wideband Radar Target Detection
下载PDF
导出
摘要 针对宽带雷达目标检测中的杂波干扰问题,提出基于FRFT(分数阶傅里叶变换)的多周期回波能量相干积累处理、基于Relax算法的多散射中心子回波分离的宽带雷达目标回波处理方法,既实现宽带雷达。目标检测中的能量相干积累,又有效抑制了环境杂波。仿真结果表明,提出的处理方法能够显著提升宽带雷达输出信杂比。 To solve the clutter interference in wideband radar target detection, a novel method based on fractional Fourier transform (FRFT) and Relax algorithm is proposed, and it coherently integrates multiple pulses and extracts target scattering centers' signals in wideband radar target detection. According to this method, target multiple pulses energy is accumulated while clutter is suppressed efficaciously. The simulation results indicate that the method can improves wideband radar output SCR ( signal to clutter ratio) evidently.
出处 《现代防御技术》 北大核心 2009年第6期118-121,125,共5页 Modern Defence Technology
关键词 宽带雷达 杂波抑制 分数阶傅里叶变换 RELAX算法 相干积累 wideband radar clutter suppression fractional Fourier transform (FRFT) Relax algorithm coherent integration
  • 相关文献

参考文献4

二级参考文献34

  • 1马君国,王远模,李保国,赵宏钟.基于距离像序列的空间目标识别算法[J].现代雷达,2006,28(4):25-28. 被引量:2
  • 2孙晓兵,保铮.分数阶Fourier变换及其应用[J].电子学报,1996,24(12):60-65. 被引量:29
  • 3Li J, Zheng D, Stoica P. Angle and waveform estimation via RELAX[J]. IEEE Trans. on Aerospace and Electronic System, 1997, 33(3): 1087-1091.
  • 4PEI SOO-CHANG, YEH MIN-HUNG, CHEIN-CHENG TSENG. Discrete Fractional Fourier Transform Based on Orthogonal Projections[J]. IEEE Trans Signal Processing, 1999, 47(5) : 1335 - 1348.
  • 5FATIH M E RDEN, ALPER M KUTAY, ALDUN M OZAKTAS H. Repeated Filtering in Consecutive Fractional Fourier Domains and Its Application to Signal Restoration[J]. IEEE Trans Signal Processing, 1999, 47(5):1458 - 1462.
  • 6DAVID MENDLOVIC, HALDUN M OZAKTAS, ADOLF W LOHMANN. Fractional Correlation[J]. APPLIED OPTICS,1995, 34(2) :303 - 309.
  • 7SERGIO GRANIERI, RICARDO ARIZAGA, ENRIQUE E SICRE. Optical Correlation Based on the Fractional Fourier Transform[J]. APPLIED OPTICS, 1997, 36(26) :6636 - 6645.
  • 8NAMIAS V. The Fractional Order Fourier Transform and Its Application to Quantum Mechanics[J]. J Inst Math Appl, 1980,25:241 - 265.
  • 9MBBRIDE A C, KERR F H. On Namias' Fractional Fourier Transform[J]. IMA J Appl Math, 1987, 39:159 - 175.
  • 10GIANFRANCO CARIO, TOMASO ERSEGHE, PETER KRANIAUSKAS, et al. Multiplicity of Fractional Fourier Trans-forms and Their Relationship[J]. IEEE Trans Signal Processing, 2000, 48(1) : 227 - 241.

共引文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部