期刊文献+

基于映射的复轮廓波变换纹理图像检索系统 被引量:2

Mapping based complex contourlet transform texture image retrieval system
下载PDF
导出
摘要 轮廓波变换纹理检索系统检索率比较低的根本原因在于轮廓波变换域系数的振荡性和移变敏感性。为了克服轮廓波变换的这些缺陷,提出了一种基于映射的复轮廓波变换。在该变换的基础上,采用变换域子带系数的能量和标准偏差序列作为特征向量,以Canberra距离为相似度度量标准,构造了一种纹理图像检索系统。实验结果表明,在特征向量长度、检索时间、所需存储空间基本相同的情况下,基于映射的复轮廓波变换检索系统比轮廓波变换检索系统具有更高的检索率。 The ultimate reason of low retrieval rate of contourlet transform texture image retrieval systems lies in the coefficients oscillating and shift sensitive characters. In order to overcome the defects of contourlet transforms, a mapping based contourlet transform is proposed, and a texture image retrieval system based on the new transform is proposed in which the feature vectors are formed by cascading the energy and standard de- viation of each sub-band in the mapping based contourlet domain, and a Canberra distance is used as similarity metric. Experimental results show that the image retrieval system is superior to that of the original contourlet transform with almost same length of feature vectors, retrieval time and memory.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2009年第12期2982-2987,共6页 Systems Engineering and Electronics
基金 国家自然科学基金(60572048)资助课题
关键词 检索系统 基于映射的复轮廓波变换 纹理图像 轮廓波变换 Canberra距离 检索率 retrieval system mapping based complex contourlet transform texture image contourlet transform Canberra distance retrieval rate
  • 相关文献

参考文献1

二级参考文献15

  • 1练秋生,孔令富.圆对称轮廓波变换的构造[J].计算机学报,2006,29(4):652-657. 被引量:12
  • 2Viscito E, Allebach J P. The analysis and design of multidimensional fir perfect reconstruction filter banks for arbitrary sampling lattices. IEEE Transactions on Circuits and Systems, 1991, 38(1): 29-41
  • 3Mallat S. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(7): 674-693
  • 4Do M N, Vetterli M. Wavelet-based texture retrieval using generalized gaussian density and Kullback-Leibler distance. IEEE Transactions on Image Processing, 2002, 11(2): 146- 158
  • 5Po D D Y, Do M N. Directional muhiscale modeling of images using the contourlet transform. IEEE Transactions on Image Processing, 2006, 15(6): 1610-1620
  • 6Smeulders A W M, Worring M, Santini S, Gupta A, Jain R. Content-based image retrieval at the end of the early years.IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(12): 1349-1380
  • 7Manjunath B S, Ohm J R, Vasudevan V V, Yamada A. Color and texture descriptors. IEEE Transactions on Circuits and Systems for Video Technology, 2001, 11(6): 703-715
  • 8Borber M. MPEG-7 visual shape descriptors. IEEE Transactions on Circuits and Systems for Video Technology, 2001, 11(6): 716-719
  • 9Haralick R M, Shanmugam K, Dinstein I. Texture feature for image classification. IEEE Transactions on Systems, Man, and Cybernetics, 1973, 3(6): 610-621
  • 10Tamura H, Mori S, Yamawaki T. Texture features corresponding to visual perception. IEEE Transactions on Systems, Man, and Cybernetics, 1978, 8(6): 460-473

共引文献14

同被引文献30

  • 1Datta R, Joshi D, Li J, et al. Image Retrieval: Ideas, Influences, and Trends of the New Age [J]. ACM Computing Surveys (S0360-0300), 2008, 40(2): 1-60.
  • 2Ming H, Tong C, Siu K, et al. A Fast and Effective Model for Wavelet Subband Histograms and Its Application in Texture Image Retrieval [J]. IEEE Transactions on Image Processing(S1057-7149), 2006, 15(10): 3078-3088.
  • 3Datta R, Ge W, Li J, et al. Toward Bridging the Annotation-Retrieval Gap in Image search [J]. IEEE Multimedia(S1070. 986X), 2007, 14(3): 24-35.
  • 4Wang K, Lin H, Chan P, et al. Implementation of an Image Retrieval System Using Wavelet Decomposition and Gradient Variation [J]. WSEAS Transactions on Computers(S1109-2750), 2008, 7(6): 724-734,.
  • 5Olanda R, Perez M, Benavent X. Tiling of the Wavelet Lowpass Subbands for Progressive Browsing of Images [J]. IEEE Signal Processing Letters(S1070-9908), 2006, 13(11): 680-683.
  • 6Tao L, Ogihara M. Toward Intelligent Music Information Retrieval [J]. IEEE Multimedia(S1070-986X), 2006, 8(3): 564-574.
  • 7Kokare M, Biswas P K, Chatterji B N. Rotation-Invariant Texture Image Retrieval Using Rotated Complex Wavelet Filters [J]. IEEE Trans on Systems, Man, and Cybernetics, Part B: Cybernetics(S1083-4419), 2006, 36(6): 1273-1282.
  • 8Jayalakshmi M, Merchant S N, Desai U B. Optimum Retrieval of Watermark from Wavelet Significant Coefficients [J]. IET Information Security(S1751-8709), 2008, 2(4): 119-128.
  • 9Do M N, Vetterli M. The Contourlet Transform: an Efficient Directional Multiresolution Image Representation [J]. IEEE Transactions on Image Processing(S1522-4880), 2005, 14(12): 2091-2106.
  • 10Lu Y, Do M N. A new contourlet transform with sharp frequency localization [C]//2006 IEEE International Conference on Image Processing, Atlanta, GA, Oct 8-11, 2006: 8-11.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部