期刊文献+

分类器集成差异性研究 被引量:9

Survey of diversity researches on classifier ensembles
下载PDF
导出
摘要 差异性是集成学习中的重要概念,对差异性的研究在集成学习领域中占有基础性地位。从差异度量方法、差异度与分类器集成性能的关系以及差异度在集成优化中的应用三个方面对当前研究进展进行分析。深入分析了现有工作,对存在的问题给出一些解决思路,建议不能为了差异性以较大的基分类器精度损失为代价;不能为了引入差异性而偏离原来的分类问题。 Diversity is an important concept in ensemble learning and researches on diversity are the foundation of ensemble learning.To the classification problems,progress of ensemble diversity are investigated on three aspects,i.e.diversity measurements,relationship between ensemble diversity and ensemble performance and the application of diversity in optimization of classifier ensembles.Based on going deep into existing works,some resolutions for problems in existence are presented.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2009年第12期3007-3012,共6页 Systems Engineering and Electronics
基金 陕西省自然科学基金(2007F19) 空军工程大学导弹学院研究生学位论文创新基金(DY06102)资助课题
关键词 分类器集成 差异性 泛化性能 优化 classifier ensemble diversity generalization performance optimization
  • 相关文献

参考文献21

  • 1Hansen L K, Salamon P. Neural network ensembles[J]. IEEE Trans. on Pattern AnaLysis and Machine Intelligence, 1990, 12(10) :993 - 1001.
  • 2荆晓远,杨静宇.基于相关性和有效互补性分析的多分类器组合方法[J].自动化学报,2000,26(6):741-747. 被引量:12
  • 3Dietterich T G. Machine learning research: four current directions[J]. AI Magazine, 1997,18(4) : 97 - 136.
  • 4Dietterich T G. An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization[J]. Machine Learning, 2000,40(2) : 139 - 158.
  • 5Kohavi R, Wolpert D H. Bias plus variance decomposition for zero-one loss functions[C]//Saitta L. Machine learning: Proc. of the 13th International Conference, Morgan Kau f mann , Los Altos, CA, 1996:275 - 283.
  • 6Shipp C A, Kuncheva L I. Relationships between combination methods and measures of diversity in combining classifiers[J].Information Fusion ,2002,3(2) : 135 - 148.
  • 7Chandra A, Yao X. DIVACE: diverse and accurate ensemble learning algorithm[M]. Yang Z R, et al. IDEAL, LNCS 3177, Heidelberg: Springer, 2004 : 619 - 625.
  • 8Melville P, Mooney R J. Creating diversity in ensembles using artificial data[J].Information Fusion, 2005,6(1) : 99 - 111.
  • 9肖旭红,戴汝为.一种识别手写汉字的多分类器集成方法[J].自动化学报,1997,23(5):621-627. 被引量:14
  • 10Breiman L. Bagging predietors[J]. Machine Learning, 1996, 24(2) :123 - 140.

二级参考文献19

  • 1郝红卫,戴汝为.人机结合的集成方法及其在字符识别中的应用[J].模式识别与人工智能,1996,9(1):10-20. 被引量:14
  • 2戴汝为,智能系统的综合集成,1995年
  • 3戴汝为,A new approach for feature extraction and feature selection of handwritten chinese character recognition,1992年,479页
  • 4Xu L,IEEE Trans SMC,1990年,22卷,3期,418页
  • 5钱学森,自然杂志,1990年,13卷,1期,3页
  • 6Hong Z Q,Pattern Recognition,1991年,24卷,2期,211页
  • 7Dietterich T G. Machine learning research: four current directions[J].AI Magazine, 1997,18 (4):97- 136.
  • 8Hansen LK,Salamon P.Neural network ensembles[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1990,12(10) :993 - 1001.
  • 9Krogh A, Vedelsby J. Neural network ensembles, cross validation,and active learing[A] .Tesauro G,Touretzky D S and Leen T K,eds, Advances in Neural Information Processing Systems 7 [C]. Cambridge,MA, MIT Press, 1995.231 - 238.
  • 10Partridge D, Yates W B. Engineering multiversion neural-net systems[J]. Neural Computation, 1996, 8(4) : 869 - 893.

共引文献30

同被引文献102

引证文献9

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部