期刊文献+

二维典型相关分析的实质与改进算法

Essential of two-dimensional canonical correlation analysis and improved algorithm
下载PDF
导出
摘要 由于样本数常小于样本维数,传统的典型相关分析方法CCA(canonical correlation analysis)会产生小样本问题。为了解决这类问题,一种新的有监督特征抽取方法——二维典型相关分析2DCCA被提出。与传统CCA方法把二维图像矩阵拉成一维向量不同,2DCCA直接从图像矩阵中抽取特征,该方法有效地解决了小样本问题。但是在单特征下,CCA的类标编码对识别率会产生影响,在一维情况下,传统的类标编码使得CCA等价于LDA,从而限制了CCA抽取更多有效的识别特征。证明了在传统的类标编码时,2DCCA仍然与2DI.DA等价。为了打破这种约束,提出了一种基于样本标号的2DCCA改进算法。在ORL和AR人脸库上的实验表明,提出的方法优于传统的2DCCA。 Traditional canonical correlation analysis (CCA) suffers the small sample size problem due to high matrix dimensions from the matrix-to-vector preprocessing. This problem was solved by a new supervised learning method called two-dimensional CCA (2DCCA). The 2DCCA computed image covarianced matrix directly without matrix-to-vector conversion. But in one feature modality case, different encoding modes for class label could result in different classification performances. And CCA was equivalent to LDA in the traditional class-label encoding in 1-dimensional case which restricted the effective features extraction. Conclusion is drawn that the relationship between 2DCCA and 2DLDA is equivalent. In order to pro- mote the 2DCCA classification performance, an improved sample label-based 2DCCA was proposed. Experimental results on ORL and AR face databases show that the algorithm is better than the traditional 2DCCA in terms of the recognition performance.
出处 《解放军理工大学学报(自然科学版)》 EI 北大核心 2009年第6期517-522,共6页 Journal of PLA University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(60773172) 江苏省自然科学基金资助项目(BK2008411)
关键词 典型相关分析 类标编码 线性鉴别分析 特征抽取 人脸识别 CCA (canonical correlation analysis) class-label encoding LDA (linear discriminantanalysis) feature extraction face recognition
  • 相关文献

参考文献7

  • 1SUN Qun-sen, ZENG Sheng-gen, LIU Yan, et al. A new raethod of feature fusion and its application in image recognition [J]. Pattern Recognition, 2005, 38 (12) : 2437-2448.
  • 2ZOU Cai-rong, SUN Ning, JI Zhen-hai, et al. 2DCCA: A novel method for small sample size face recognition[C]. Texas: IEEE Workshop on Applications of Computer Vision, 2007.
  • 3YAMADA M, PEZESHKI A, AZIMI-SADJADI M R. Relation between kernel CCA and kernel FDA [C]. Montreal: IEEE International Joint Conference on Neural Networks, 2005.
  • 4SUN Ting-kai, CHEN Song-can. Class label versus sample label-based CCA [J]. Applied Mathematics and Computation, 2007,185 ( 1 ) : 272-283.
  • 5JOHANSSON B. On classification: simultaneously reducing dimensionality and finding automatic representation using canonical correlation[R]. Linkoping.. Linkoping University, Technical report LiTH-ISY-R- 2375, ISSN 1400-3902, 2001.
  • 6LIU Yan-yan, LIU Xiu-ping, SU Zhi-xun. A new fuzzy approach for handling class labels in canonical correlation analysis[J]. Neurocomputing, 2008, 71 (9) : 1735-1740.
  • 7MARTINEZ A M, BENAVENTE R. The AR Face Database ER3- http ://rvll. ecn. purdue, edu/-aleix/aleix_face_DB, html, CVC Technical Report # 24, 1998.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部