摘要
由于样本数常小于样本维数,传统的典型相关分析方法CCA(canonical correlation analysis)会产生小样本问题。为了解决这类问题,一种新的有监督特征抽取方法——二维典型相关分析2DCCA被提出。与传统CCA方法把二维图像矩阵拉成一维向量不同,2DCCA直接从图像矩阵中抽取特征,该方法有效地解决了小样本问题。但是在单特征下,CCA的类标编码对识别率会产生影响,在一维情况下,传统的类标编码使得CCA等价于LDA,从而限制了CCA抽取更多有效的识别特征。证明了在传统的类标编码时,2DCCA仍然与2DI.DA等价。为了打破这种约束,提出了一种基于样本标号的2DCCA改进算法。在ORL和AR人脸库上的实验表明,提出的方法优于传统的2DCCA。
Traditional canonical correlation analysis (CCA) suffers the small sample size problem due to high matrix dimensions from the matrix-to-vector preprocessing. This problem was solved by a new supervised learning method called two-dimensional CCA (2DCCA). The 2DCCA computed image covarianced matrix directly without matrix-to-vector conversion. But in one feature modality case, different encoding modes for class label could result in different classification performances. And CCA was equivalent to LDA in the traditional class-label encoding in 1-dimensional case which restricted the effective features extraction. Conclusion is drawn that the relationship between 2DCCA and 2DLDA is equivalent. In order to pro- mote the 2DCCA classification performance, an improved sample label-based 2DCCA was proposed. Experimental results on ORL and AR face databases show that the algorithm is better than the traditional 2DCCA in terms of the recognition performance.
出处
《解放军理工大学学报(自然科学版)》
EI
北大核心
2009年第6期517-522,共6页
Journal of PLA University of Science and Technology(Natural Science Edition)
基金
国家自然科学基金资助项目(60773172)
江苏省自然科学基金资助项目(BK2008411)
关键词
典型相关分析
类标编码
线性鉴别分析
特征抽取
人脸识别
CCA (canonical correlation analysis)
class-label encoding
LDA (linear discriminantanalysis)
feature extraction
face recognition