期刊文献+

自然邻点插值方法在三维地质建模中的应用 被引量:16

Application of natural neighbor interpolation method in three-dimensional geological modeling
下载PDF
导出
摘要 为了增强三维地质模型的准确性,突出复杂地质体局部相关性较高的特点,避免传统插值方法中存在的计算复杂度高、多依赖人工经验等缺点,在建模过程中引入了自然邻点插值(NNI)方法对三维离散数据进行插值。而现有的NNI方法无法直接应用于有限域的边界插值计算,成为该方法应用于三维地质建模的最大难点问题。依据Voronoi cells和Delaunay triangles的几何性质,采用non-Sibsonian(Laplace)插值方法构造形函数,详细证明了NNI方法在边界处的连续性,实现了边界插值且降低了其计算复杂度,解决了此难点问题。通过构建城市地质模型实例,验证了该方法的正确性和有效性。 To enhance the accuracy of three-dimensional geological model, emphasize the high local relevance characteristics of the complex geological bodies, and avoid complicated calculation and dependence on human experience in traditional interpolation methods, the natural neighbor interpolation (NNI) method was used for three-dimensional discrete data interpolation in the process of modeling. But the existing NNI method could not be applied to the boundary interpolation of finite fields, which was the most difficult problem of its application in three-dimensional geological modeling. Based on the geometry of Voronoi Cells and Delaunay Triangles, the shape function was constructed using non-Sibsonian(Laplace) interpolation method. The continuity of the boundary in NNI method was proven,the boundary interpolation was implemented and the computational complexity was reduced. The accuracy and validity of the method were proven by building the city geological model.
出处 《解放军理工大学学报(自然科学版)》 EI 北大核心 2009年第6期650-655,共6页 Journal of PLA University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(40742015)
关键词 自然邻点插值 三维地质建模 VORONOI CELLS DELAUNAY TRIANGLES NNI(natural neighbor interpolation) three-dimensional geological modeling voronoi cells delaunay triangles
  • 相关文献

参考文献12

  • 1HOULDING S W. 3D Geoscience modeling computer techniques for geological characterization[M]. New York and Heidelburg:Springer-Verlag, 1994.
  • 2BRAUN J, SAMBRIDGE M. A numerical method for solving partial differential equations on highly irregu- lar evolving grids[J]. Nature, 1995(376): 655-660.
  • 3SIBSON R. A brief description of natural neighbor interpolation [C]. Chichester : Interpretting multivariate data, 1981.
  • 4ITAI B, ODED S. Conformal invariance of voronoi percolation [J]. Commun math phys, 1998 (197) : 75- 107.
  • 5GOLIAS N A, DUTTON R W. Delaunay triangulation and 3D adaptive mesh generation [J]. Finite elements in analysis and design, 1997(25):331-341.
  • 6普雷帕拉塔FP 沙莫斯MI 庄心谷 译.计算几何导论[M].北京:科学出版社,1990..
  • 7朱怀球,吴江航.一种基于Voronoi Cells的C∞插值基函数及其在计算流体力学中的若干应用[J].北京大学学报(自然科学版),2001,37(5):669-678. 被引量:10
  • 8BELIKOV V V, IVANOV V D, KONTOROVICH V K, et al. The non-sibsonian interpolation: a new method of interpolation of the values of a function on an arbitrary set of points[J]. Computational Mathematics and Mathematical Physics, 1997,37(1) : 9-15.
  • 9HIYOSHI H, SUGIHARA K. Two generalizations of an interpolant based Voronoi diagrams[J]. International Journal of Shape Modeling, 1999(31):51-58.
  • 10蔡永昌,朱合华,王建华.基于Voronoi结构的无网格局部Petrov-Galerkin方法[J].力学学报,2003,35(2):187-193. 被引量:42

二级参考文献19

  • 1白世伟,贺怀建,王纯祥.三维地层信息系统和岩土工程信息化[J].华中科技大学学报(城市科学版),2002,19(1):23-26. 被引量:40
  • 2张渭军,王文科.基于钻孔数据的地层三维建模与可视化研究[J].大地构造与成矿学,2006,30(1):108-113. 被引量:59
  • 3屈红刚,潘懋,王勇,薛胜,明镜.基于含拓扑剖面的三维地质建模[J].北京大学学报(自然科学版),2006,42(6):717-723. 被引量:51
  • 4HOULDING S W. 3D Geoscience Modeling Computer Techniques for Geological Characterization [M]. New York and Heidelburg, Springer-Verlag, 1994.
  • 5LEMONAM,JONESNL. Building solid models from boreholes and user-defined eross-sections[J].Computers & Geosciences, 2003,29(3) :547--555.
  • 6Belytschko T, Lu YY, Gu L. Element-free Galerkin method. Int J Num Meth Eng, 1994, 37:229~256
  • 7Belytschko T, Krongauz Y, Organ D. Meshless methods: An overview and recent developments. Comput Meth Appl Mech Eng, 1996, 139:3~47
  • 8Atluri SN, Zhu TL. A new meshless local PetrovGalerkin(MLPG) approach in computational mechanics.Computational Mechanic, 1998, 22(2): 117~127
  • 9Braun J, Sambridge M. A numerical method for solving partial differential equations on highly irregular evolving grids. Nature, 1995, 376:655~660
  • 10Sukumar N, Moran, Belytschko T. The nature element method in solid mechanics. Int J Num Meth Eng, 1998,43:839~887

共引文献78

同被引文献155

引证文献16

二级引证文献108

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部