期刊文献+

基于增广拉格朗日方法的多柔体动力学研究 被引量:3

Flexible Multibody Dynamics Research Based on Augmented Lagrangian Method
下载PDF
导出
摘要 采用绝对节点坐标方法研究了受非线性约束的大变形多柔体系统动力学问题。基于增广拉格朗日方法推导建立了系统的动力学方程。方程中的未知变量数目与约束方程数目无关,仅以广义位置为基本变量进行求解。采用不变矩阵法计算系统弹性力,引入Broyden拟牛顿法大大提高了求解效率。系统仿真结果表明了所用方法的有效性。 Based on the absolute nodal coordinate method,the large deformation flexible multibody system with nonlinear constraints was investigated.The equations of motion were deducted by Augmented Lagrangian method.The primary unknowns in the equations of motion are independent of the constraint equations.Only taking the generalized positions as the primary unknowns,the elastic forces were evaluated by the invariant matrix method and the Broyden qusi-Newton method was introduced,which made the computation efficiency improved greatly.The simulation results for this kind of systems indicate the validation of the proposed method.
出处 《系统仿真学报》 CAS CSCD 北大核心 2009年第24期7707-7710,7714,共5页 Journal of System Simulation
基金 国家自然科学基金(60574053)
关键词 绝对节点坐标 非线性约束 大变形多体系统 增广拉格朗日方法 系统仿真 Absolute Nodal Coordinate Nonlinear Constraints Large Deformation Multibody System Augmented Lagrangian Method System Simulation
  • 相关文献

参考文献17

  • 1A A Shabana. Flexible Multi-Body Dynamics Review of Past and Recent Developments [J]. Multibody System Dynamics (S1573-272X), 1997, 1(2): 189-222.
  • 2A A Shabana. An absolute nodal coordinates formulation for the large rotation and deformation analysis of flexible bodies [R]// Technical Report. No. MBS96-1-UIC. USA: University of Illinois at Chicago, 1996.
  • 3P Eberhard, W Schiehlen. Computational Dynamics of Multibody Systems History, Formalisms, and Applications [J]. ASME Journal of Computational and Nonlinear Dynamics (S1555-1415), 2006, 1(1): 3-12.
  • 4Jin-Yang Liu, Hao Lu. Rigid-flexible coupling dynamics of three- dimensional hub-beams system [J]. Multibody System Dynamics (S1573-272X), 2007, 18(4): 487-510.
  • 5Qiang Tian, Yunqing Zhang, Liping Chen, Jingzhou Yang. Two-Link Flexible Manipulator Modeling and Tip Trajectory Tracking Based on the Absolute Nodal Coordinate Method [J]. International Journal of Robotics and Automation (S0826-8185), 2009, 24(2):103-114.
  • 6Yunqing Zhang, Qiang Tian, Liping Chen, Jingzhou Yang. Simulation of a Viscoelastic Flexible Multibody System Using Absolute Nodal Coordinate and Fractional Derivative Methods [J]. Multibody System Dynamics (S 1573-272X), 2009, 21(3):281-303.
  • 7田强,张云清,陈立平,覃刚.含分数阻尼特性元件的多体系统动力学研究[J].力学学报,2009,41(6):920-928. 被引量:6
  • 8J Baumgarte. Stabilization of Constraints and Integrals of Motion in Dynamical Systems [J]. Computer Methods in Applied Mechanics and Engineering (S0045-7825), 1972, 1(1): 1-16.
  • 9E Bayo, R Ledesma. Augmented Lagrangian and Mass-Orthogonal Projection Methods for Constrained Multibody Dynamics [J]. Nonlinear Dynamics (S 1573-269X), 1996, 9(1): 113-130.
  • 10Qiang Tian, Liping Chen, Yunqing Zhang, Jingzhou Yang. An Efficient Hybrid Method for Multibody Dynamics Simulation Based on Absolute Nodal Coordinate Formulation [J]. ASME Journal of Computational and Nonlinear Dynamics (S1555-1415), 2009, 4(2): 0210091-02100914.

二级参考文献2

共引文献5

同被引文献30

  • 1余永辉,关富玲,陈向阳.可展桁架运动过程动力学模拟[J].计算力学学报,2005,22(2):197-201. 被引量:8
  • 2赵孟良,关富玲.考虑摩擦的周边桁架式可展天线展开动力学分析[J].空间科学学报,2006,26(3):220-226. 被引量:31
  • 3Ando R K, Zhang T. A framework for learning predictive structures from multiple tasks and unlabeled data[ J ]. Journal of Ma- chine Learning Research, 2005(6) : 1 817 - 1 853.
  • 4Bakker B, Heskes T. Task clustering and gating for Bayesian multi -task learning[ J ]. Journal of Machine Learning Research, 2003 (4): 83-99.
  • 5Evgeniou T, Micehelli C A, Pontil M. Learning multiple tasks with kernel methods [ J ]. Journal of Machine Learning Research, 2005(6) : 615 -637.
  • 6Argyriou A, Evgeniou T, Massimiliano Pontil. Convex multi -convex feature learning[ J]. Machine Learning, 2008 (73) : 243 - 272.
  • 7Duchi J, Singer Y. Efficient online and batch learning using forward backward splitting [ J ]. Journal of Machine Learning Re- search, 2009 (10) : 2 899 - 2 934.
  • 8Kowalski M. Sparse regression using mixed norms[ J ]. Applied and Computational Harmonic Analysis, 2009 (27) : 303 -324.
  • 9Kowalski M, Szafranski M, Ralaivola L. Multiple indefinite kernel learning with mixed norm regularization[ C]// ICML '09 Proceedings of the 26th Annual International Conference on Machine Learning. New York : ACM, 2009 : 69.
  • 10Nocedal J, Wright S. Numerical optimization[ M]. New York: Springer - Verlag, 1999.

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部