期刊文献+

骨骼服直接力控制方法研究与仿真 被引量:6

Research and Simulation of Exoskeleton Suit's Direct Force Control
下载PDF
导出
摘要 骨骼服是一种将机械动力装置的机械能量与人的智能相结合的机器人。骨骼服控制中的难点问题是,能够有效控制骨骼服使其跟随人体运动,并保持人机之间的作用力最小。针对该问题提出了一种直接力控制策略,其特征有两点,一是在人机之间安装力传感器,使得控制器了解人的意图;二是控制器不需要精确的骨骼服数学模型,简单实用。仿真结果说明所设计的控制器能实现骨骼服对人体运动的跟踪,同时有效降低人机之间的作用力,并对环境变化和负荷变化具有一定的鲁棒性。 Exoskeleton Suit is a kind of human-machine robot which combines the human's intelligence with the powerful energy of mechanism.The key problem of the control of exoskeleton suit is how to control the exoskeleton suit follow the pilot's motion effectively and maintain the human-machine interaction force minimal.A direct force control method was proposed and it has two key features,one is some multi-axis force/torque sensors which are fitted between the pilot and the exoskeleton suit which makes the controller know the intention of the pilot,another is the controller which does not need the exact mathematical model which makes the controller simple and practical.The simulation result shows the designed controller can control the exoskeleton suit trace for the pilot's motion,as well as decrease the human-machine interaction force and is robust to the variation of the environment and the load.
出处 《系统仿真学报》 CAS CSCD 北大核心 2009年第24期7868-7872,共5页 Journal of System Simulation
基金 国家自然科学基金(60705030)
关键词 骨骼服 直接力控制 人机结合 仿真 exoskeleton Suit direct force control human-machine simulation
  • 相关文献

参考文献15

  • 1Zhiyong Yang, Lihua Gui, Xiuxia Yang, Wenjin Gu, Yuanshan Zhang, Simulation Research of Exoskeleton Suit Based on Sensitivity Amplification Control [C]// Proceedings of the IEEE International Conference on Automatic and Logistics, Jinan, China, 2007. USA: IEEE, 2007: 1353-1357.
  • 2Vukobratovic M, Ciric V, Hristic D. Contribution to the study of active exoskeletons [C]// Proceedings of the 5th International Federation of Automatic Control Congress, Paris, France, 1972:13-19.
  • 3Hristic D, Vukobratovic M. Development of Active Aids for Handicapped [C]// Proceedings of the III International Conference on Biomedical Engineering, Sorrento, Italy, 1973: 123-129.
  • 4Ruthenberg B J, Wasylewski N A J E. An Experimental Device for Investigating the Force and Power Requirements of a Powered Gait Orthosis [J]. Journal of Rehabilitation Research and Development (S0748-7711), 1997, 34(2): 33-38.
  • 5Colombo G, Jorg M, Dietz V. Driven Gait Ortho'sis to do Locomotor Training of Paraplegic Patients [C]// Proceedings of the 22nd Annual EMBS International Conference, Chicago IL, USA, 2000. Chicago, USA: Enderle John D, 2000:3159-3163.
  • 6David H Szondy. Hardiman [EB/OL]. (2004)[2009]. http ://www.davidszondy.com/future/robot/hardiman.htm.
  • 7Okamura J, Tanaka H, Sankai Y. EMG-based prototype powered assistive system for walking aid [C]// Proc. Asian Symposium on Industrial Automation and Robotics (ASIAR'99), Bangkok, Thailand, 1999. Bangkok, Thailand: Er Zelinsky, John B Moore, 1999: 229-234.
  • 8Lee S, Sankai Y. Power assist control for walking aid with HAL-3 based on EMG and impedance adjustment around knee joint [C]//Proc. Of IEEE/RSJ International Conf on Intelligent Robots and Systems 0ROS 2002), EPFL, Switzerland, 2002. USA: IEEE, 2002: 1499-1504.
  • 9Hiroaki Kawamoto, Yoshiyuki Sankai. Power assist system HAL-3 for gait disorder person [C]// International Conference on Computers Helping People with Special Needs, Linz, Austria, 2002. Linz: Klaus Miesenberger, 2002:196-203.
  • 10Andrew Chu, H Kazerooni, Adam Zoss. On the biomechanical design of the berkeley lower extremity exoskeleton (BLEEX) [C]// Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain. USA: IEEE, 2005: 4345-4352.

同被引文献33

  • 1陈尔奎,喻俊志,王硕,谭民.多仿生机器鱼群体及单体控制体系结构的研究[J].中国科学院研究生院学报,2003,20(2):232-237. 被引量:4
  • 2Najarian K, Splinter R. Biomedical signal and image process- ing[M]. Boca Raton, USA: CRC Press, 2012.
  • 3Yin Y H, Fan Y J, Xu L D. EMG and EPP-integrated human- machine interface between the paralyzed and rehabilitation ex- oskeleton[J], IEEE Transactions on Information Technology in Biomedicine, 2012, 16(4): 542-549.
  • 4George T, Shalu G K, Sivanandan K S. Sensing, processing and application of EMG signals for HAL (hybrid assistive lim- b)[C]//International Conference on Sustainable Energy and In- telligent Systems. Stevenage, UK: IET, 2011: 749-753.
  • 5Kasaoka K, Sankai Y. Predictive control estimating operator's intention for stepping-up motion by exo-skeleton type power assist system HAL[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems, vol.3. Piscataway, USA: IEEE, 2001: 1578-1583.
  • 6Kawamoto H, Lee S, Kanbe S, et al. Power assist method for HAL-3 using EMG-based feedback controller[C]//IEEE Inter- national Conference on Systems, Man and Cybernetics, vo1.2. Piscataway, USA: IEEE, 2003: 1648-1653.
  • 7Lee S, Sankai Y. Power assist control for walking aid with HAL- 3 based on EMG and impedance adjustment around knee joint [C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2002: 1499-1504.
  • 8Kiguchi K, Imada Y. EMG-based control for lower-limb power- assist exoskeletons[C]//IEEE Workshop on Robotic Intelligence in Informationally Structured Space. Piscataway, USA: IEEE, 2009: 19-24.
  • 9Fleischer C, Hommel G. A human-exoskeleton interface utiliz- ing electromyography[J]. IEEE Transactions on Robotics, 2008, 24(4): 872-882.
  • 10Chan F H Y, Yang Y S, Lam F K, et al. Fuzzy EMG classifica- tion for prosthesis control[J]. IEEE Transactions on Rehabilita- tion Engineering, 2000, 8(3): 305-311.

引证文献6

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部