期刊文献+

冷冻面团发酵技术在中式食品中的应用 Ⅱ.冰结构蛋白对鲜酵母及包子类冷冻面团流变发酵特性的影响 被引量:6

Application of Frozen Dough Fermentation in Chinese Traditional Foods Ⅱ. Effect of Ice-structural Protein on Rheofermentation Properties of Compressed Yeast and Frozen Dough
下载PDF
导出
摘要 应用 F3 流变发酵仪和动态流变仪研究冰结构蛋白(ISP)对冻藏 0、1、2、3、4 周鲜酵母发酵特性和冷冻面团动态流变学特性的影响。结果表明:随着冻藏时间延长,所有酵母样品发酵过程中气体释放曲线最大高度H′m、产生CO2 气体总体积V总及面团最大膨胀高度Hm 均逐渐降低,冷冻面团的弹性模量(G′)和黏性模量(G 〞)逐渐下降,冷冻面团包子比容显著减小。引入冰结构蛋白(ISP)后,冻藏时间相同时,酵母发酵过程中的 H′m、V 总及Hm 均有所增大,G′和 G 〞下降趋势减缓,冷冻面团包子比容明显大于空白组,说明ISP 能够抑制冻藏过程中冰晶的形成和重结晶,减弱冰晶对酵母及面筋蛋白质网络结构的破坏,同时也说明ISP 能够增强面筋蛋白质网络结构的强度,提高面筋蛋白质对冰晶破坏的抵抗力。 Effect of ice-structural protein (ISP) on rheofermentation properties of compressed yeast and frozen dough after frozen for 0, 1, 2, 3 and 4 weeks were investigated using F3 rheofermentometer and dynamic rheometer, respectively. Results showed that extended frozen time resulted in decrease of maximum height of gas release curve (H'm), total volume of CO2 produced by yeast (Vtotal), maximum swelling height of dough (H 'm), elastic modulus (G ') and viscous modulus (G 〞) of frozen dough, specific volume of frozen dough. However, addition of ISP could effectively increase H'm, Vtotal and Hm of compressed yeast, G 'and G 〞of frozen dough, and specific volume of frozen dough at same frozen time. These investigations suggested that ISP could inhibit the formation of ice crystallization and prevent from recrystallization, and reduce the damage of yeast and protein texture of dough from ice crystallization.
出处 《食品科学》 EI CAS CSCD 北大核心 2009年第23期17-21,共5页 Food Science
基金 美国农业部国际合作项目[A-(86269)]
关键词 冰结构蛋白 鲜酵母 包子冷冻面团 发酵 流变学 ice-structural protein (ISP) compressed yeast frozen dough fermentation rheology
  • 相关文献

参考文献19

  • 1陈明.冷冻面团技术及其应用[J].食品科学,1998,19(8):14-16. 被引量:26
  • 2INOUE Y, BUSHUK W. Studies on frozen dough. I. Effects of frozen storage and freeze-thaw cycles on baking rhcological properties[J]. Cereal Chemistry, 1991, 68: 627-631.
  • 3VARRIANO-MARSTON E, HSU K H, MAHDI J. Rhcological and sWactural changes in frozen dough[J]. Baker's Digest, 1980, 54(1): 32- 34; 41.
  • 4NEYRENEUF O, DELPUECH B. Freezing experiments on yeasted dough slabs. Effects of cryogenic temperatures on the baking performance [J]. Cereal Chemistry, 1993, 70(1): 109-111.
  • 5KLINE L, SUGIHARA T F. Factors affecting the stability of frozen bread doughs. I. Prepared by straight dough method[J]. Baker's Digest, 1968, 42(5): 44-80.
  • 6SIDEBOTTOM C, BUCKLEY S. Heat-stable antifreeze protein from grass[J]. Nature, 2000, 406(6793): 249-251; 256-263.
  • 7YEH Y, FEENEY R E, MCKOWN R L, et al. Measurement of grain growth in the recrystallization of rapidly frozen solutions of antifreeze glycoproteins[J]. Biopolymers, 1994, 34(11): 1495-1504.
  • 8BARCENAS M E, ROSELL C M. Effect of frozen storage time on the bread crumb and aging of par-baked bread[J]. Food Chemistry, 2006, 95 (3): 438-445.
  • 9DEVRIES A L. The role of antifreeze glyeopeptides and peptides in the freezing avoidance of antarctic fishes[J]. Comp Biochem Physiol, 1988, 90(3): 611-621.
  • 10GRIFITH M, ALA P S C, YANG D, et al. Antifreeze proteins produced endogenously in winter rye leaves[J]. Plant Physiol, 1992, 100 (2): 593-596.

二级参考文献72

共引文献131

同被引文献66

引证文献6

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部