摘要
通常使用的聚类分割方法认为样本的分布是超球形的,然而,这并不符合人脑磁共振MR(magnet-icresonance)图象的真正特点.针对这一缺陷,提出了一种基于超椭球模糊聚类的人脑MR图象分割方法.实验结果表明,这种分割方法能有效地将人脑MR图象分割为灰质和白质两种组织,并具有较高的效率和分割精度.
The commonly used cluster based segmentation method assumes that the sample distribution is hyperspherical, but this kind of assumption is not consistent with the real characteristic of the human brain MR (magnetic resonance) image. In order to surmount this drawback, a new algorithm for segmenting MR image based on hyperellipsoidal fuzzy clustering is presented in this paper. Provided experimental results indicate that the proposed strategy is feasible for classifying the white matter and the gray matter of the brain, and has the merits of both high efficiency and remarkable accuracy.
出处
《软件学报》
EI
CSCD
北大核心
1998年第9期683-689,共7页
Journal of Software
基金
国家自然科学基金
国家863高科技项目基金
关键词
MR
图象分割
自适应阈值
超椭球模糊聚类
MR (magnetic resonance) image segmentation, adaptive threshold, Gaussian filtering, hyperellipsoidal fuzzy clustering.