期刊文献+

基于超椭球模糊聚类的人脑磁共振图象分割 被引量:5

Human Brain Magnetic Resonance Image Segmentation Based on Hyperellipsoidal Fuzzy Clustering Algorithm
下载PDF
导出
摘要 通常使用的聚类分割方法认为样本的分布是超球形的,然而,这并不符合人脑磁共振MR(magnet-icresonance)图象的真正特点.针对这一缺陷,提出了一种基于超椭球模糊聚类的人脑MR图象分割方法.实验结果表明,这种分割方法能有效地将人脑MR图象分割为灰质和白质两种组织,并具有较高的效率和分割精度. The commonly used cluster based segmentation method assumes that the sample distribution is hyperspherical, but this kind of assumption is not consistent with the real characteristic of the human brain MR (magnetic resonance) image. In order to surmount this drawback, a new algorithm for segmenting MR image based on hyperellipsoidal fuzzy clustering is presented in this paper. Provided experimental results indicate that the proposed strategy is feasible for classifying the white matter and the gray matter of the brain, and has the merits of both high efficiency and remarkable accuracy.
出处 《软件学报》 EI CSCD 北大核心 1998年第9期683-689,共7页 Journal of Software
基金 国家自然科学基金 国家863高科技项目基金
关键词 MR 图象分割 自适应阈值 超椭球模糊聚类 MR (magnetic resonance) image segmentation, adaptive threshold, Gaussian filtering, hyperellipsoidal fuzzy clustering.
  • 相关文献

同被引文献30

  • 1哈斯巴干,马建文,李启青,刘志丽,韩秀珍.模糊c-均值算法改进及其对卫星遥感数据聚类的对比[J].计算机工程,2004,30(11):14-15. 被引量:12
  • 2黄敏超,吴建军,陈启智.模糊超体神经网络及其在火箭发动机故障分离中的应用[J].航空动力学报,1997,12(1):79-82. 被引量:4
  • 3Koffler R, Decotiis A G, Rao P K. A Procedure for Estimating Cloud Amount and Height from Satellite Infrared Radiation Data[J]. Mon. Wea. Rev., 1973,101: 240-243.
  • 4Desbois M, Seze G, Szejwach G. Automatic Classification of Clouds on METEOSAT Imagery Application to High-level Clouds[J]. J. Appl. Meteor., 1982, 21 : 401 - 402.
  • 5Wdch R M, Navar M S, Sengupta S K. The Effect of Resolution upon Texture-based Cloud Field Classification[J]. J. Geophys. Res., 1989, 94: 14767- 14781.
  • 6Haralick R M, Shanmugam K, Dinstein I. Textural Features for Image Classification[J]. IEEE, Trans. Syst., Man. & Cybem., 1973(3): 610- 621.
  • 7Magurran A E. Ecological Diversity and Its Measurement[M] .New Jersey:Princeton University Press, 1988.
  • 8Bezdek J C. A Convergence Theorem for the Fuzzy ISODATA Clustering Algorithms[J]. IEEE Tran. Patter Anal. and Machine Intell. ,1980(2): 1-8.
  • 9Pal N T. On Ouster Validity for the Fuzzy C-means Model[J]. IEEE Trans. Fuzzy System,1995,3(3):370- 379.
  • 10Amini M, Gallinari P. Semi-supervised Leamlng with Explicit Misclassification Modeling[ C]//Proceedings of the 18^th International Joint Conference on Artificial Intelligence, 2003: 555- 561.

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部