期刊文献+

以PVB为造孔剂采用硅树脂制备泡沫陶瓷 被引量:2

Fabrication of SiOC Ceramic Foam with Silicon Resin and Polyvinyl Butyral
下载PDF
导出
摘要 采用硅树脂为先驱体,利用先驱体转化法与添加造孔剂法相结合制备SiOC泡沫陶瓷。通过对造孔剂聚乙烯醇缩丁醛(PVB)和硅树脂的热分析制定温度曲线,研究了裂解温度、造孔剂含量对泡沫陶瓷抗压强度及孔隙率的影响,采用XRD、SEM及EDS对SiOC泡沫陶瓷进行了物相、微观结构和成分分析。结果表明,在1000~1400℃温度范围内,随着温度的升高,泡沫陶瓷的抗压强度先升高后降低,而孔隙率逐渐降低;造孔剂含量对泡沫陶瓷的性能也有明显的影响,随着造孔剂含量的增加,试样的抗压强度逐渐减小,而孔隙率逐渐增大。当裂解温度为1250℃,PVB的含量为50%(质量分数,下同)时,所制得的泡沫陶瓷的抗压强度为52.3MPa,孔隙率为72%。XRD研究表明,随着温度的逐步升高,硅树脂的裂解产物发生了由非晶态向晶态的转变。微观结构分析显示,SiOC泡沫陶瓷呈三维网状结构,微孔分布较均匀。 The SiOC ceramic foam was prepared using silicon resin as raw material and polyvinyl butyral as pore-forming agent. The sintering process was made by the TG-DSC curve analysis of polyvinyl butyral(PVB) and silicon resin. The effect of the pyrolysis temperature and the content of pore-forming agent on the compression strength and porosity of ceramic foam was studied, the phase of pyrolyzate were characterized by XRD and the microstructure and component were analyzed by SEM and EDX. The result reveals, with the increase of the content of pore-forming agent, the porosity increases and the compression strength decreases. Between 1000 ℃ andl400 ℃, with the increase of pyrolysis temperature, the compression strength increases first and then decreases, and the porosity decreases continually. Compression strength and porosity are 52.3 MPa and 72% respectively when the content of polyvinyl butyral and the pyrolysis temperature are 50wt% and 1250 ℃ respectively. With the increase of pyrolysis temperature, the pyrolyzates of silicon resin transformed from amorphous to crystal material between 1100-1400 ℃. Microstructure study reveals the foam ceramics had three-dimensional web structures and uniform pores.
作者 刘洪丽 胡明
机构地区 佳木斯大学
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2009年第A02期369-372,共4页 Rare Metal Materials and Engineering
基金 黑龙江省普通高等学校新世纪优秀人才培养计划资助 佳木斯大学科技重点项目资助(Lzj2008-007)
关键词 泡沫陶瓷 硅树脂 先驱体转化法 造孔剂 PVB foam ceramic silicon resin precursor infiltration pyrolysis pore-forming agent PVB
  • 相关文献

参考文献6

  • 1Colombo P, Bemardo E. Composites Science and Technology[J],2003,63:2353.
  • 2Kim Y W, Kim S H, Song I H et al. J Am Ceram Soc[J], 2005, 88 (10): 2949.
  • 3Kim Y W, Kim S H. Journal of Materials Science[J], 2004, 39: 3513.
  • 4Haugen H, Will J, Kohler A et al. J Eur Ceram Soc[J], 2004,24:661.
  • 5刘洪丽,李树杰,陈志军.聚硅氧烷连接RBSiC陶瓷[J].稀有金属材料与工程,2006,35(1):134-137. 被引量:9
  • 6马青松,陈朝辉,郑文伟.聚硅氧烷的交联与裂解陶瓷化研究[J].高分子材料科学与工程,2005,21(2):279-282. 被引量:6

二级参考文献10

共引文献13

同被引文献23

  • 1刘洪丽,钟文武,吴明忠.裂解温度对聚硅氧烷制备SiOC泡沫陶瓷性能的影响[J].佳木斯大学学报(自然科学版),2007,25(1):49-51. 被引量:2
  • 2马彦,马青松,陈朝辉.先驱体转化法制备多孔陶瓷的发展现状[J].材料工程,2007,35(3):62-66. 被引量:9
  • 3Student A R, Gonzenbach U T, Tervoort E, et al. Processing routes to maeroporous ceramics : A review [ J ]. J. Am. Ceram. Soc. , 2006,89 ( 6 ) : 1771-1789.
  • 4Colombo P, Modesti M. Silicon oxycarbide ceramic foams from a preceramic polymer [ J ]. J. Am. Ceram. Soc. , 1999,82 (3) :573-578.
  • 5Colombo P, Hellmann J R, Shelleman D L. Mechanical properties of silicon oxycarbide ceramic foams [ J ]. J. Am. Ceram. Soc. , 2001,84 ( 10 ) : 2245-2251.
  • 6Colombo P, Hellmann J R, Shelleman D L. Thermal shock behavior of silicon oxycarbide foams [J]. J. Am. Ceram. Soc. ,2002,85 (9) :2306-2312.
  • 7Colombo P, Roisman T G, ScheMer M, et al. Conductive ceramic foams from preceramic polymers [ J ]. J. Am. Ceram. Soc., 2001,84 ( 10 ) :2265- 2268.
  • 8Zeschky J, Goetz N F, Neubauer J, et al. Preceramic polymer derived cellu|ar ceramics [ J ]. Composites Sci. Technol. ,2003,63:2361-2370.
  • 9Bao X, Nangrejo M R, Edirisinghe M J. Synthesis of silicon carbide foams fi'om polymeric precursors and their blends [ J ]. J. Mater. Sci. , 1999,34 : 2495 -2505.
  • 10Kim Y W, Park C B. Processing of microcellular preceramics using carbon dioxide[ J ]. Composittes Sci. Technol. ,2003,63:2371-2377.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部