期刊文献+

退火温度对Au/NiO纳米颗粒复合薄膜光吸收性能的影响 被引量:2

Effect of Annealing Temperature on Optical Absorption Properties of Au/NiO Nano-Composite Thin Film
下载PDF
导出
摘要 采用溶胶-凝胶法制备了Au/NiO纳米颗粒复合薄膜。用X射线衍射仪、原子力显微镜以及吸收光谱表征了薄膜的结构、表面形貌以及光学性能。研究结果表明:在500℃或500℃以上温度退火后,Au/NiO薄膜中存在NiO和单质Au两相,颗粒的平均大小为23~35nm。薄膜中Au颗粒基本呈球形,随着温度的升高,薄膜表面的粗糙度减小,Au颗粒长大,分布也较均匀。Au/NiO薄膜在波长550~610nm范围内具有明显的表面等离子共振吸收峰,随着退火温度的升高,吸收峰先蓝移后红移,其光吸收强度逐渐减弱。 The Au/NiO nano-composite thin films were prepared by sol-gel method. The phase structure, surface morphology and optical property of the films were characterized by X-ray diffraction, AFM and optical absorption spectra, respectively. The results show that NiO and Au phases existed in Au/NiO thin films when the annealing temperature is above 500 ℃, and the mean diameter of Au particles is about 23-35 nm. Au particles shaped in an approximate sphere. The surface roughness is reduced, the particle size of Au is increased and the distributions of Au particles became more uniform with increasing annealing temperature. The Au/NiO films had obvious surface plasmon resonance peak as the wavelength in range of 550 nm to 610 nm. The absorption peak shifts firstly to short wavelength, and then to long wavelength, and the intensity of absorption peak decreases with increasing annealing temperature.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2009年第A02期647-649,共3页 Rare Metal Materials and Engineering
基金 国家重点基础研究发展计划(2007CB613301) 国家自然科学基金(50842028)
关键词 Au/NiO复合薄膜 溶胶-凝胶法 退火温度 光吸收 Au/NiO composite thin film sol-gel annealing temperature optical absorption
  • 相关文献

参考文献18

  • 1Bates Clayton W et al. Journal of Applied Physics[J], 1997,81(3): 1457.
  • 2Kreibig U et al. Optical Properties of Metal Clusters[M]. Berlin: Springer, 1995.
  • 3Gangopadhyay Pet al. Journal of Applied Physics[J], 2000, 88(9): 4975.
  • 4Celep G et al. Physical Review B[J], 2004, 70:165409-1.
  • 5Okumu Jet al. Journal of Applied Physics[J], 2005, 97:094305.
  • 6Yu Baolong et al. Journal of Applied Physics[J], 1997, 82(9): 4532.
  • 7Zhou P et al. Applied Physics Letters[J], 2003, 83(19): 3876.
  • 8Zhao J Pet al. Journal of Chemical Physics[J], 2003, 119:1909.
  • 9Fukumi Kohei et al. Journal of Applied Physics[J], 1994, 75(6): 3075.
  • 10Tanahashi Ichiro et al. Journal of Applied Physics[J], 1996, 79(3): 1244.

二级参考文献7

  • 1[1]F.Hache,D.Ricard,C.Flytzanis.[J].J.Opt.Soc.Am.B.1986,3 (12):1647
  • 2[2]A.M.Glass,A.Wokaun,J.P.Heritage,et al.[J].Phys.Rev.B.1981,24 (80):4906
  • 3[3]A.Nitzan and L.E.Brus.[J]J.Chem.Phys.1981,75(5):2205
  • 4[4]A.Wokaun.[J].Mol.Phys.1985,56(1):1
  • 5[5]S.Sakka,H.Kozuka,G.Zhao.[J].SPIE.1994,2288:108
  • 6[6]R.H.Doremus.J.Chem.Phys.1965,42(1):414
  • 7[7]G.C.Papavassiliou.[J].Prog.Solid State Chem.1979,12:185

共引文献14

同被引文献12

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部