期刊文献+

自适应背景对消方法 被引量:4

Adaptive Background Cancel Method
下载PDF
导出
摘要 本文讨论了一种新的红外图象预处理算法—自适应背景对消算法。这种算法的基本出发点是自适应L滤波具有很好的消除脉冲噪声的特性,红外图象中的点目标具有脉冲噪声的特性和红外噪声的相关特性。实验表明这种算法在某种程度上去除了原始图象噪声的相关性并且能明显的抑制背景噪声和显著提高信杂比。 A new preprocessing algorithm for infrared image, adaptive background cancel algorithm, is developed in this paper. This algorithm is based on the adaptive L-filter's characteristic of filtering impulse noise well.The noise of dim target in the infrared image has the characteristic of impulse noise and infrared noise. The experiment result show that this algorithm can surpress background noise well obviously raiae signal-clutter-ratio and can get rid of the relativity of original image noise.
出处 《信号处理》 CSCD 1998年第3期285-288,278,共5页 Journal of Signal Processing
关键词 红外图象 自适应滤波 背景对消 预处理 infrared image, L-filter, adaptive filter, background cancel
  • 相关文献

同被引文献27

  • 1张旭升,周桃庚,沙定国.数字图像噪声估计的方法及数学模型[J].光学技术,2005,31(5):719-722. 被引量:21
  • 2杨卫平,李智勇,沈振康,李飚.长波红外导引头空间自动目标识别智能系统(二)[J].红外与激光工程,1996,25(5):17-23. 被引量:2
  • 3Donoho D L. De-noising via soft thresholding. Technical report 409[R]. California:Stanford University, 1992.
  • 4Donoho D L, Johnstone I M. Ideal spatial adaptation via wavelet shrinkage[J]. Biometrika, 1994,81:425-455.
  • 5Donoho D L. Denoising by soft thresholding [J]. IEEE Transon Information Theory, 1995,41(3):613-627.
  • 6Donoho D L, Johnstone I M. Threshold selection for wavelet shrinkage of noisy data [A]. Inz Proc 16th Annual International Conference of IEEE Engineering in Medicine and Biology Society[C]. Baltimore, Maryland. 1994,1. A24-A25.
  • 7Chang S G, Bin Yu, Martin Vetterli. Spatially adaptive wavelet thresholding with context modeling for image denoising[J].IEEE Trans on Image Processing, 2000,9(9) :1522-1531.
  • 8Donoho D L, Johnstone I M. Wavelet shrinkage., asymptopia?[J]. Journal of the Royal Statistical Society, Series B, 1995,57(2) :301-369.
  • 9Mallat S G. A theory for multiresolution signal decomposition:the wavelet representation[J]. IEEE Transactions on Pattern Analysis and Machine Intellegence, 1989,11(7) : 674-693.
  • 10Hall P, Koch I. On the feasibility of cross-validation in image analysis [J]. SIAM J Appl Math, 1992, 52(1):292-313.

引证文献4

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部