期刊文献+

网格环境下基于流水线的多重相似查询优化 被引量:1

Pipeline-Based Multi-Query Optimization for Similarity Queries in Grid Environment
下载PDF
导出
摘要 提出一种网格环境下基于流水线技术的分布式多重相似查询的优化算法(pipeline-based distributed similarity query processing,简称pGMSQ).首先,当用户提交若干个查询请求时,采用基于代价的动态层次聚类策略(dynamic query clustering,简称DQC)对其进行合并.然后在数据结点层,采用索引支持的向量集缩减方法快速过滤无关向量.最后,在执行结点层对候选向量执行求精操作返回结果向量.由于本查询采用了流水线技术,实验结果表明,该方法在提高查询性能的同时也提高了系统的吞吐量. This paper proposes a multi-query optimization algorithm for pipeline-based distributed similarity query processing (pGMSQ) in grid environment. First, when a number of query requests are simultaneously submitted by users, a cost-based dynamic query clustering (DQC) is invoked to quickly and effectively identify the correlation among the query spheres (requests). Then, index-support vector set reduction is performed at data node level in parallel. Finally, refinement of the candidate vectors is conducted to get the answer set at the execution node level. By adopting pipeline-based technique, this algorithm is experimentally proved to be efficient and effective in minimizing the response time by decreasing network transfer cost and increasing the throughput.
出处 《软件学报》 EI CSCD 北大核心 2010年第1期55-67,共13页 Journal of Software
基金 国家自然科学基金Nos.60873022 60903053 浙江省自然科学基金Nos.Y1080148 Y1090165 浙江省科技厅重大科技项目No.2008C13082 浙江工商大学青年人才基金重点资助项目No.Q09-7 南京大学计算机软件新技术国家重点实验室开放基金~~
关键词 网格 多重查询优化 高维索引 数据分片 grid multi-query optimization high-dimensional indexing data partition
  • 相关文献

参考文献1

二级参考文献9

  • 1I Foster, C Kcsselrnan. The Grid: Blueprint for a New Computing Infrastructure. San Francisco, CA: Morgan Kaufmann, 1998
  • 2A Chervenak, I Foster, C Kesselman, et al. The data grid:Towards an architecture for the distributed management and analysis of large scientific datasets. Journal of Network and Computer Applications, 2001, 23:187~200
  • 3Wolfgang Hoschek, Javier Jaen Martinez, Asad Samar, et al.Data management in an international data grid project. In: Proc of the 1st IEEE/ACM Int'l Workshop on Grid Computing. Berlin:Springer-Verlag, 2000. 17~20
  • 4B Segal. Grid Computing: The European data grid project. The 2000 IEEE Nuclear Science Symposium and Medical Imaging Conference, Lyon, France, 2000
  • 5Heinz Stockinger. Distributed database management systems and the data grid. The 18th IEEE Symp on Mass Storage Systems and the 9th NASA Goddard Conference on Mass Storage Systems and Technologies, San Diego, CA, 2001
  • 6J Smith, A Gounaris, P Watson, et al. Distributed query processing on the grid. In: Proc of the 3rd Int'l Workshop on Grid Computing. Berlin: Springer-Verlag, 2002. 279~290
  • 7M Nedim Alpdemir, Arijit Mukherjee, Norman W Paton, et al.Service-based distributed querying on the grid. UK e-Science Programme All Hands Conference, Nottinghan, UK, 2003
  • 8Z Ives, D Florescu, M Friedman, et al. An adaptive query execution system for data integration. In: Proc of the 1999 ACM SIGMOD Int'l Conf on Management of Data. New York: ACM Press, 1999. 299~310
  • 9Nick Roussopoulos, Hyunchul Kang. A pipeline n-way join algorithm based on the 2-way semijoin program. IEEE Trans on Knowledge and Data Engineering, 1991, 3(4): 486~495

共引文献7

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部