期刊文献+

Towards a gravitation theory in Berwald-Finsler space

Towards a gravitation theory in Berwald-Finsler space
原文传递
导出
摘要 Finsler geometry is a natural and fundamental generalization of Riemann geometry. The Finsler structure depends on both coordinates and velocities. It is defined as a function on tangent bundle of a manifold. We use the Bianchi identities satisfied by the Chern curvature to set up a gravitation theory in Berwald-Finsler space. The geometric part of the gravitational field equation is nonsymmetric in general. This indicates that the local Lorentz invariance is violated. Finsler geometry is a natural and fundamental generalization of Riemann geometry. The Finsler structure depends on both coordinates and velocities. It is defined as a function on tangent bundle of a manifold. We use the Bianchi identities satisfied by the Chern curvature to set up a gravitation theory in Berwald-Finsler space. The geometric part of the gravitational field equation is nonsymmetric in general. This indicates that the local Lorentz invariance is violated.
作者 李昕 常哲
出处 《Chinese Physics C》 SCIE CAS CSCD 2010年第1期28-34,共7页 中国物理C(英文版)
基金 Supported by NSFC (10575106)
关键词 Finsler geometry Berwald space field equation Finsler geometry, Berwald space, field equation
  • 相关文献

参考文献29

  • 1Cohen A G, Glashow S L. Phys. Rev. Lett., 2006, 97: 021601.
  • 2Kostelecky V A, Samuel S. Phys. Rev. D, 1989, 39:683.
  • 3Damour T, Polyakov A M. Nucl. Phys. B, 1994, 423:532.
  • 4Amelino-Camelia G, Ellis J R, Mavromatos N E, Nanopoulos D V, Sarkar S. Nature, 1998, 393:763.
  • 5Gambini R, Pullin J. Phys. Rev. D, 1999, 59:124021.
  • 6Alfaro J, Morales-Tecotl H A, Urrutia L F. Phys. Rev. Lett., 2000, 84: 2318.
  • 7Phys. Rev. D, 2002, 65:103509.
  • 8Hayakawa M. Phys. Lett. B, 2000, 478: 394.
  • 9hep- th/9912167.
  • 10Mocioiu I, Pospelov M, Roiban R. Phys. Lett. B, 2000, 489: 390.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部